
585-313-203
108647314
January 2000
Issue 2

Intuity™ CONVERSANT® System
Version 7.0

Application Development with Advanced Methods

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 ii

Copyright and Legal Notices

Copyright Copyright © 2000 by Lucent Technologies.
All rights reserved.
Printed in the USA.

This material is protected by the copyright laws of the United States and other
countries. It may not be reproduced, distributed, or altered in any fashion by
any entity (either internal or external to Lucent Technologies), except in
accordance with applicable agreements, contracts or licensing, without the
express written consent of the Business Communications Systems (BCS)
Global Learning Solutions (GLS) organization and the business management
owner of the material.

Acknowledgment This document was prepared by the GLS organization of the BCS division of
Lucent Technologies. Offices are located in Denver CO, Columbus OH,
Middletown NJ, and Basking Ridge NJ, USA.

 Copyright and Legal Notices

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 iii

Trademarks Lucent Technologies has made every effort to supply the following trademark
information about company names, products, and services mentioned in the
Intuity CONVERSANT documentation library:

• Adobe Systems, Inc. — Trademarks: Adobe, Acrobat.

• AT&T — Registered trademarks: Truevoice.

• CLEO Communications — Trademarks: LINKix.

• Hayes Microcomputer Products, Inc. — Trademarks: Hayes,
Smartmodem.

• Intel Corporation — Registered trademarks: Pentium.

• Interface Systems, Inc. — Trademarks: CLEO.

• International Business Machines Corporation — Registered trademarks:
IBM, VTAM.

• Lucent Technologies — Registered trademarks: 5ESS, AUDIX,
CONVERSANT, DEFINITY, Voice Power. Trademarks: FlexWord, Intuity,
Lucent.

• Microsoft Corporation — Registered trademarks: Excel, Internet Explorer,
Microsoft, MS, MS-DOS, Windows, Windows NT.

• Minnesota Mining and Manufacturing — Trademarks: 3M.

• Netscape Communications — Trademarks: Netscape Navigator.

 Copyright and Legal Notices

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 iv

• Novell, Inc. — Registered trademarks: Novell.

• Oracle Corporation — Trademarks: OBJECT*SQL, ORACLE,
ORACLE*Terminal, PRO*C, SQL*FORMS, SQL*Menu, SQL*Net,
SQL*Plus, SQL*ReportWriter.

• Phillips Screw Co. — Registered trademarks: Phillips.

• Santa Cruz Operation, Inc. — Registered trademarks: UnixWare.

• UNIX System Laboratories, Inc. — Registered trademarks: UNIX.

• Veritas Software Corporation — Trademarks: VERITAS.

• Xerox Corporation — Trademarks: Ethernet.

Limited Warranty Lucent Technologies provides a limited warranty on this product. Refer to the
“Limited Use Software License Agreement” card provided with your package.

Lucent Technologies has determined that use of this electronic data delivery
system cannot cause harm to an end user's computing system and will not
assume any responsibility for problems that may arise with a user's computer
system while accessing the data in these document.

Every effort has been made to make sure that this document is complete and
accurate at the time of release, but information is subject to change.

 Copyright and Legal Notices

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 v

United States FCC
Compliance
Information

Part 15: Class A statement. This equipment has been tested and found to
comply with the limits for a Class A digital device, pursuant to Part 15 of the
FCC Rules. These limits are designed to provide reasonable protection
against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio-
frequency energy and, if not installed and used in accordance with the
instructions, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful
interference, in which case the user will be required to correct the
interference at his own expense.

Canadian
Department of
Communications
(DOC) Interference
Information

This digital apparatus does not exceed the Class A limits for radio noise
emissions set out in the radio interference regulations of the Canadian
Department of Communications.

Le Présent Appareil Nomérique n’émet pas de bruits radioélectriques
dépassant les limites applicables aux appareils numériques de la class A
préscrites dans le reglement sur le brouillage radioélectrique édicté par le
ministére des Communications du Canada.

European Union
Declaration of
Conformity

Lucent Technologies Business Communications Systems declares that the
Lucent Intuity CONVERSANT system equipment specified in this document
conforms to the referenced European Union (EU) Directives and Harmonized
Standards listed below: EMC Directive 89/336/EEC Low-Voltage Directive
73/23/EEC. The “CE” mark affixed to the equipment means that it conforms
to the above directives.

 Copyright and Legal Notices

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 vi

Telecom New
Zealand Ltd
Warning Notices

GENERAL WARNING: The grant of a Telepermit for any item of terminal
equipment indicates that only Telecom has accepted that the item complies
with minimum conditions for connection to its network. It indicates no
endorsement of the product by Telecom, nor does it provide any sort of
warranty. Above all, it provides no assurance that any item will work correctly
in all respects with other items of Telepermitted equipment of a different
make or model, nor does it imply that any product is compatible with all of
Telecom’s network services.

IMPORTANT NOTICE: Under power failure conditions, this device may not
operate. Please ensure that a separate telephone, not dependent on local
power, is available for emergency use.

AUTOMATIC RE-ATTEMPTS TO THE SAME NUMBER: Some parameters
required for compliance with Telecom’s Telepermit requirements are
dependent on the equipment (PC) associated with this device. The
associated equipment shall be set to operate within the following limits for
compliance with Telecom specifications:

• There shall be no more than 10 call attempts to the same number within
any 30 minute period for any single manual call initiation, and,

• The equipment shall go on-hook for a period of not less than 30 seconds
between the end of one attempts and the beginning of the next attempt.

 Copyright and Legal Notices

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 vii

AUTOMATIC CALLS TO DIFFERENT NUMBERS: Some parameters
required for compliance with Telecom’s Telepermit requirements are
dependent on the equipment (PC) associated with this device. In order to
operate within the limits for compliance with Telecom specifications, the
associated equipment shall be set to ensure that automatic calls to different
numbers are spaced such that there is not less than 5 seconds between the
end of one call attempt and the beginning of the next attempt.

USER INSTRUCTIONS (AUTOMATIC CALL SETUP): This equipment shall
not be set up to make automatic calls to the Telecom "111" emergency
service.

CALL ANSWERING (AUTOMATIC ANSWERING EQUIPMENT): Some
parameters required for compliance with Telecom’s Telepermit requirements
are dependent on the equipment (PC) associated with this device. In order to
operate within the limits for compliance with Telecom specifications, the
associated equipment shall be set to ensure that calls are answered between
3 and 30 seconds of receipt of ringing.

Toll Fraud Toll fraud is the unauthorized use of your telecommunications system by an
unauthorized party, for example, persons other than your company’s
employees, agents, subcontractors, or persons working on your company’s
behalf. Note that there may be a risk of toll fraud associated with your
telecommunications system and, if toll fraud occurs, it can result in
substantial additional charges for your telecommunications services.

 Copyright and Legal Notices

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 viii

Your Responsibility for Your System’s Security

You and your system manager are responsible for the security of your system
and for preventing unauthorized use. You are also responsible for reading all
installation, instruction, and system administration documents provided with
this product in order to fully understand the features that can introduce risk of
toll fraud and the steps that can be taken to reduce that risk. Lucent
Technologies does not warrant that this product is immune from or will
prevent unauthorized use of common-carrier telecommunication services or
facilities accessed through or connected to it. Lucent Technologies will not be
responsible for any charges that result from such unauthorized use.

Lucent Technologies Fraud Intervention and Corporate Security

If you suspect that you are being victimized by toll fraud and you need
technical support or assistance, call the Lucent Technologies National
Customer Care Center Toll Fraud Intervention Hotline at 1 800 643-2353.

Aside from whether immediate support is required, all toll fraud incidents
involving Lucent products or services should be reported to Lucent Corporate
Security at 1 800 821-8235. In addition to recording the incident, Lucent
Corporate Security is available for consultation on security issues,
investigation support, referral to law enforcement agencies, and educational
programs.

 Copyright and Legal Notices

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 ix

Documentation
Ordering
Information

To order a document, contact the Lucent Technologies Publications Center
and specify the 9-digit document number, the issue number, and the issue
date.

Write, Call, or Fax

Lucent Technologies Publications Center
2855 N. Franklin Road
Indianapolis, IN 46219

Voice 1 800 457-1235 International Voice 317 322-6791
FAX 1 800 457-1764 International FAX 317 322-6699

World Wide Web

Use a web browser to reach one of the following sites. Click Documents and
follow the instructions at the site.

• Organizations within Lucent Technologies

http://www.cic.lucent.com

• Lucent Technologies customers and others

http://www.lucentdocs.com

http://www.cic.lucent.com
http://www.lucentdocs.com

 Copyright and Legal Notices

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 x

Standing Orders

You can be placed on a standing order list for this and other documents you
may need. Standing order will enable you to automatically receive updated
versions of individual documents or document sets, billed to account
information that you provide. For more information on standing orders, or to
be put on a list to receive future issues of this document, call or write the
Lucent Technologies Publications Center (see Write, Call, or Fax on page ix).

Contents

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xi

Copyright and Legal Notices ii

About This Book xxii
Overview . xxii
Intended Audience . xxiii
How to Use This Book . xxiii
Conventions Used in This Book . xxv

Terminology .xxv
Safety and Security Alert Labels . xxxiii

Getting Help . xxxiv
Technical Assistance. . xxxv
Related Resources. xxxvi
Using the CD-ROM Documentation . xxxviii
How To Comment on This Book . xli

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xii

1 Application Design Considerations 1
Overview . 1
Designing a Successful Application . 2
Application Development Tools . 2

2 Application Structure 7
Overview . 7
Application Components . 8
Directory Structure for Applications . 9
Conventions for Naming Files and Programs . 10
Coding Style . 14

3 TAS Script Instructions 17
Overview . 17
Transaction State Machine . 18
The Script and Call Progression . 19

Call Progression Starting Conditions . 20
Script Control . 20
TSM Control. 21
Script Termination . 21

Data Storage. . 22
Call Data Collection . 24

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xiii

Script Conventions. . 26
Destination and Source Arguments . 28
Arguments to Script Instructions . 28
Address Modes . 29

Script Instructions . 33
Voice Output Instructions. 33
Data Gathering Instructions . 48
Data Manipulation Instructions . 59
String Instructions . 65
Flow Control Instructions . 68
Voice Coding Instructions . 82
Dial Pulse and Speech Recognition Script Instructions. 89
Network Interface Instructions . 102
Miscellaneous Instructions. 114

Script Development . 118
Transaction Control Header Files . 119
Defining User Memory . 120
Identification of Events. 120
Source File. 121

Wait Conditions . 122
Speech-Flushing Instructions . 123
Wait-Causing Instructions . 124
Avoiding Common Pitfalls with Wait Conditions . 127

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xiv

Troubleshooting Scripts . 130
Check the Status of talk Instructions . 130
Erase Arguments in the ttdelim Instruction . 133
Speech String Matching Failures. 135
Loss of Touch Tones . 135

4 Data Interface Processes 138
Overview . 138
Introduction to the Data Interface Process. . 139

Message Queues. 141
Types of DIPs . 143
Bulletin Board . 145

Writing the DIP . 147
Step 1: Define Data to be Passed Between the DIP and the TSM Script 148
Step 2: Initialize the DIP to the System . 154
Step 3: Send and Receive Messages . 161
Step 4: Implement the Application-Specific Processing 170
Step 5: Define and Add Logger Errors. 170
Step 6: Add Error Reporting . 171
Step 7: Add Trace Messages. 171
Step 8: Compile and Execute the DIP . 173

Troubleshooting . 176
Hardcoded DIPs . 178

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xv

TTS_DIP . 182
Message Interfaces with tts_dip . 183

5 IRAPI 186
Overview . 186
Introduction to the IRAPI. . 188

Library Overview . 189
Manual Pages for Commands and Parameters. 190
Library Parameters . 190
Application Structure and Control . 191
Resource Allocation. 193
Voice Input and Output . 194
IRAPI Organization . 197
IRAPI with Intuity CONVERSANT System Features . 211
Application Organization . 212

Application Control . 216
Application Dispatch Process . 217
Application Dispatch API . 218

IRAPI Run-Time Services . 224
Application Framework . 225
Run-Time Services . 247

Application Management. . 347
Compiling and Installing Applications . 347

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xvi

Debugging Applications . 349
Performance and System Tuning for IRAPI Applications 354

Resource Management . 354
Disk Performance . 359
RM Tunable Parameters . 362
Global Parameters. 367

6 Message Logger 368
Overview . 368
Overview of the Message Logger . 369

Message Logger Purpose . 369
Message Classes . 370

Message Logger Development . 370
Message Logger Structure . 371
Message Content and Format Specification . 373
Compiling the Messages in the DIP. 376
Testing a Single Error Message. 380
Testing Several Error Messages . 381

Adding and Changing Explain Message Text 382
Using the Text Editor to Add Messages. 383
Using the Command Line To Add Messages. 384

Removing Error Messages. . 384

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xvii

Appendix A: Application Example 386
Overview . 386
Sample Script — Script Builder Action Steps 387
Sample Script — TAS Script Language . 391
Sample External Function . 395
Sample DIP . 397
APPLmsg File . 404
logAPPL.h File . 406

Appendix B: Summary of TAS Script Instructions 408
Overview . 408
TAS Script Instruction Syntax . 409

and. 409
atoi . 410
background . 411
case . 413
chantype . 414
dbase . 416
decr . 418
dipname. 419
dipnum. 420
dipterm. 421
div . 425

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xviii

dtitos . 425
dtstoi . 428
event . 430
exec . 437
execu . 441
extend . 442
getinput . 451
getIRAPIparam, getIRAPIparamstr . 454
goto . 456
hbridge. 457
hundsec . 458
ibrl . 459
incr . 460
itoa . 461
jmp . 461
label . 462
listenall. 463
load . 465
mul . 466
nap. 466
no_rts. 467
not . 469
nwitime. 470
or . 471
phremove. 472

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xix

phreserve. 473
quit . 476
recog_cntl . 477
recog_init . 478
recog_start. 479
recog_stop . 481
resource_alloc . 482
rts. 484
say . 485
scrinst . 488
setalk . 490
setattr. 491
setcca . 492
setIRAPIparam, setIRAPIparamstr . 494
setparam . 496
setstring . 500
setttfl . 501
sleep . 502
sp_alloc . 503
sr_talkoff . 506
strcmp . 508
strcpy . 510
strlen . 510
subprog . 511
talk . 515

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xx

talkresume . 516
tchars . 518
tfile . 519
tflush . 520
tic . 523
tnum. 547
trace. 549
tstop . 550
ttclear . 552
ttdelim . 553
ttintr . 557
ttmask . 558
tttime . 559
vc . 560
vctime . 565

Appendix C: C-Library Functions 566
Overview . 566
Purpose . 567
C-Library Function Locations . 567
libspp.so Functions . 569

db_init . 569
db_pr . 570
db_put . 572

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxi

et_send . 573
mesgrcv . 576
mesgsnd . 583
startup . 586
VSerror . 589
VSstartup . 590
VStoname . 593
VStoqkey . 594

libalerter.a Function . 598
threshold . 598

liblog.a Functions . 608
expandLog . 608
logDstPri . 614
logMsg . 621

Glossary 624

Index 708

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxii

About This Book

Overview

This book, is a reference for people who develop applications for the Intuity
CONVERSANT system using the transaction assembler script (TAS)
language, C language, and/or Intuity Response Application Programming
Interface (IRAPI). It provides information about designing software
applications and writing programs that integrate the application software and
system software. Use this book by itself or in conjunction with the Intuity
CONVERSANT System Version 7.0 Application Development with Script
Builder, 585-313-206.

 About This Book Intended Audience

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxiii

Intended Audience

The intended audience for this book includes:

• End customer application developers — This group is responsible for
creating and maintaining applications on the Intuity CONVERSANT
system environment.

• Custom application developers — This group is responsible for creating
applications to be used in the Intuity CONVERSANT system environment
for end-user customers. This audience includes any of the custom
application development organizations within Lucent Technologies.

• Application distributors — This group distributes and implements
applications for end-users. This audience includes independent software
vendors (ISVs).

How to Use This Book

This book is organized into the following chapters:

• Chapter 1, Application Design Considerations — Provides a general
understanding of the human factors as well as the hardware factors you
must consider when designing an application. Chapter 1 also lists the
steps involved in designing an application before you begin to process the
speech data and write the script instructions.

 About This Book How to Use This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxiv

• Chapter 2, Application Structure — Provides an outline of the directory
structure and naming conventions you should use when developing
application programs.

• Chapter 3, TAS Script Instructions — Explains the TSM process, the
script conventions, the instructions used by a script, and the
application-dependent functions that you can use in a script.

• Chapter 4, Data Interface Processes — Explains the data interface
process (DIP) interfaces between the TSM and a host or local database.
This chapter describes both hard-coded and dynamic DIPs.

• Chapter 5, IRAPI — Describes the Intuity Response Application
Programming Interface.

• Chapter 6, Message Logger — Describes how to add or modify system
messages and their associated text.

• Appendix A, Application Example — Provides a complete example of the
application-dependent code and the files that an application developer
must develop for any speech application.

• Appendix B, Summary of TAS Script Instructions — Contains manual
pages for each script instruction, including the syntax, arguments, and
examples.

• Appendix C, C-Library Functions — Contains manual pages for each
voice system C-library function, including the syntax, arguments, and
examples.

 About This Book Conventions Used in This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxv

• Glossary — Defines the terms, abbreviations, and acronyms used in
system documentation.

• Index — Alphabetically lists the principal subjects covered in the book.

Conventions Used in This Book

Understanding the typographical and other conventions used in this book is
necessary to interpret the information.

Terminology

• The word “type” means to press the key or sequence of keys specified.
For example, an instruction to type the letter “y” is shown as

Type y to continue.

• The word “enter” means to type a value and then press ENTER. For
example, an instruction to type the letter “y” and press ENTER is shown
as

Enter y to continue.

 About This Book Conventions Used in This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxvi

• The word “select” means to move the cursor to the desired item and then
press ENTER. For example, an instruction to move the cursor to the start
test option on the Network Loop-Around Test screen and then press
ENTER is shown as

Select Start Test.

• The Intuity CONVERSANT system displays menus, screens, and
windows. Menus allow you to select options or to choose to view another
menu, screen, or window (Figure 1 on page xxvi). Windows and screens
both show and request system information (Figure 2 on page xxvii
through Figure 5 on page xxix).

Note: Screens shown in this book are examples only. The screens you
see on your machine will be similar, but not exactly the same.

Figure 1. Example of an Intuity CONVERSANT Menu

 About This Book Conventions Used in This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxvii

Figure 2. Example of an Intuity CONVERSANT Window Showing Information

Figure 3. Example of an Intuity CONVERSANT Window Requesting
Information

 About This Book Conventions Used in This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxviii

Figure 4. Example of an Intuity CONVERSANT Screen Requesting Information

You may use a partition of your secondary hard disk. If you
choose to use a partition of your secondary hard disk you
will be shown a screen that will allow you to partition your
secondary hard disk.

WARNING: All files in any partition(s) you delete will be
destroyed.

If you choose to create a UNIX System partition on your
secondary hard disk, it must be at least 40 MBs.

Your Options are:
1. Do not use a partition of the secondary hard disk for

the UNIX System.
2. Use a partition of the secondary hard disk for the

UNIX System.

Press ‘1’ or ‘2’ followed by ‘ENTER’.

 About This Book Conventions Used in This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxix

Figure 5. Example of an Intuity CONVERSANT Screen Showing Information

Keyboard and
Telephone Keypad
Representations

• Keys that you press on your terminal or PC are represented as small
capitalized BOLD text. For example, an instruction to press the enter key
is shown as

Press ENTER.

In order to install UnixWare, you must reserve a partition (a
portion of your hard disk’s space) on your primary hard disk
for the UNIX System.After you press ‘ENTER’ you will be shown
a screen that will allow you to create new partitions, delete
existing partitions or change the active partition of your
primary hard disk (the partition that your computer will boot
from).

WARNING: All files in any partition(s) you delete will be
destroyed. If you wish to attempt to preserve any files from
an existing UNIX System, do not delete its partition(s).

The UNIX System partition that you intend to use on the
primary hard disk must be at least 120 MBs and labeled
‘ACTIVE.’

 About This Book Conventions Used in This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxx

• Two or three keys that you press at the same time on your terminal or PC
(that is, you hold down the first key while pressing the second and/or third
key) are represented in small capitalized BOLD text. For example, an
instruction to press and hold the Alt key while typing the letter “d” is shown
as

Press ALT + D .

• Function keys on your terminal, PC, or system screens, also known as
soft keys, are represented as small capitalized BOLD text followed by the
function or value of that key enclosed in parentheses. For example, an
instruction to press function key 3 is shown as

Press F3 (Choices).

• Keys that you press on your telephone keypad appear in small capitalized
BOLD text. For example, an instruction to press the first key on your
telephone keypad is shown as

Press 1 to record a message.

Cross References
and Hypertext

Blue underlined type indicates a cross reference or hypertext link that takes
you to another location in the document when you click on it with your mouse.

 About This Book Conventions Used in This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxxi

Screen Displays • Values, system messages, field names, prompts that appear on the
screen, and simulated screen displays are shown in typewriter-style
constant width type, as in the following examples:

Enter the number of ports to be dedicated to outbound traffic in the
Maximum Simultaneous Ports field.

Alarm Form Update was successful.
Press <Enter> to continue.

• The sequence of menu options that you must select to display a specific
screen or submenu is shown as follows:

Start at the Intuity CONVERSANT main menu and select:

In this example, you would access the Intuity CONVERSANT main menu
and select the Vocie System Administration menu. From the Voice
System Administration menu, you would then select the Configuration
Management option.

Configuration Management

 Voice System Administration

 About This Book Conventions Used in This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxxii

Other Typography • Commands and text you type in or enter appear in bold type, as in the
following examples:

Enter change-switch-time-zone at the enter command: prompt.

Type high or low in the Speed: field.

• Command variables are shown in bold italic type when they are part of
what you must type in, and in blue italic type when they are referred to, for
example:

Enter ch ma machine_name, where machine_name is the name of
the call delivery machine you just created.

• Command options are shown inside square brackets, for example:

Enter connect switchname [-d] [-b | -w]

 About This Book Conventions Used in This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxxiii

Safety and Security Alert Labels

This book uses the following symbols to call your attention to potential
problems that could cause personal injury, damage to equipment, loss of
data, service interruptions, or breaches of toll fraud security:

data, service interruptions, or breaches of toll fraud security:

! CAUTION:
Indicates the presence of a hazard that if not avoided can or will cause minor
personal injury or property damage, including loss of data.

WARNING:!
Indicates the presence of a hazard that if not avoided can cause death
or severe personal injury.

! DANGER:
Indicates the presence of a hazard that if not avoided will cause death
or severe personal injury.

! SECURITY ALERT:
Indicates the presence of a toll fraud security hazard. Toll fraud is the
unauthorized use of a telecommunications system by an unauthorized
party.

 About This Book Getting Help

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxxiv

Getting Help

The Intuity CONVERSANT system provides online help to assist you during
installation, administration, and application development tasks.

To use the online help:

• Press F1 (Help) when you are in a menu or window.

The first time you press F1 , the system displays information about the
currently active window or menu.

~ When you are in a window, the help explains the purpose of the
window and describes its fields.

~ When you are in a menu, the help explains how to use menus.

If you press F1 again, the system displays a General Help screen that
explains how to use the online help.

• Press F2 (Choices) when you are in a field.

The system displays valid field choices either in a pop-up window or on
the status line directly above the function keys.

• Press F6 (Cancel) to exit the online help.

 About This Book Technical Assistance

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxxv

Technical Assistance

Contact Numbers Technical assistance on the Intuity CONVERSANT product is available
through the following telephone contacts:

• In the United States, call 1-800-242-2121.

• In Canada, call one of the following numbers, depending on your location:

~ 1-800-363-1882 for assistance in Quebec and eastern Canada

~ 1-800-387-4268 for assistance in Ontario and western Canada

• In any other country, call your local distributor or check with your project
manager or systems consultant.

Web Site The following customer support web site contains technical resources:

http://www.lucent.com/enterprise/selfservice

Included at this site is the Electronic Library Material Online (ELMO) system,
which contains over one thousand online documents for Lucent Technologies
products.

http://www.lucent.com/enterprise/selfservice

 About This Book Related Resources

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxxvi

Related Resources

Additional documentation and training material is available for you to learn
more about the Intuity CONVERSANT product.

Training To obtain training on the Intuity CONVERSANT product, contact the BCS
Education and Training Center at one of the following numbers:

• Organizations within Lucent Technologies (904) 636-3261

• Lucent Technologies customers and all others (800) 255-8988

You can also view information on Intuity CONVERSANT training at the
Global Learning Solutions (GLS) web site at one of the following web links:

• Organizations within Lucent Technologies

http://training.gls.lucent.com

• Lucent Technologies customers and all others

http://www.lucenttraining.com

The courses listed below are recommended. Other courses are available.

• For technicians doing repairs on Intuity CONVERSANT V7.0 systems

~ BTT509H, CONVERSANT Installation and Maintenance Voice
Information System

http://training.gls.lucent.com
http://www.lucenttraining.com

 About This Book Related Resources

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxxvii

• For technicians and administrators

~ BTC344M, Intuity CONVERSANT V7 Administration Overview (CD-
ROM)

• For application developers

~ BTC128H, Introduction to Script Builder

~ BTC166H, Introduction to Voice@Work

~ BTC204H, Intermediate Voice@Work

~ BTC301H, Advanced CONVERSANT Programming

Documentation Appendix A, "Documentation Guide," in Intuity CONVERSANT System
Version 7.0 System Description, 585-313-204, describes in detail all books
included in Intuity CONVERSANT documentation library and referenced in
this book.

Note: Always refer to the appropriate book for specific information on
planning, installing, administering, or maintaining an Intuity
CONVERSANT system.

Additional Suggested Documentation

It is suggested that you also obtain and use the following book for information
on security and toll fraud issues:

• GBCS Products Security Handbook, 555-025-600

 About This Book Using the CD-ROM Documentation

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxxviii

Obtaining Printed Versions of the Documentation

See Documentation Ordering Information on page ix of Copyright and Legal
Noticesfor information on how to purchase Intuity CONVERSANT
documentation in printed form. You can also print documentation locally from
the CD-ROM (see Printing the Documentation on page xl).

Using the CD-ROM Documentation

Lucent Technologies ships the documentation in electronic form. Using the
Adobe Acrobat Reader application, you can read these documents on a
Windows PC, on a Sun Solaris workstation, or on an HP-UX workstation.
Acrobat Reader displays high-quality, print-like graphics on both UNIX and
Windows platforms. It provides scrolling, zoom, and extensive search
capabilities, along with online help. A copy of Acrobat Reader is included with
the documents.

Note: When viewing documents online, it is recommended that you use
a separate platform and not the Intuity CONVERSANT system.

Setting the Default
Magnification

You can set your default magnification by selecting File | Preferences |
General. We recommend the Fit Page option.

 About This Book Using the CD-ROM Documentation

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xxxix

Adjusting the
Window Size

On HP and Sun workstations, you can control the size of the reader window
by using the -geometry argument. For example, the command string
acroread -geometry 900x900 mainmenu.pdf opens the main menu with a
window size of 900 pixels square.

Hiding and
Displaying
Bookmarks

By default, the document appears with bookmarks displayed on the left side
of the screen. The bookmarks serve as a hypertext table of contents for the
chapter you are viewing. You can control the appearance of bookmarks by
selecting View | Page Only or View | Bookmarks and Page.

Using the Button
Bar

The button bar can take you to the book’s Index, table of contents, main
menu, and glossary. It also lets you update your documents. Click the
corresponding button to jump to the section you want to read.

Using Hypertext
Links

Hypertext links appear in blue underlined text. These links are shortcuts to
other sections or books.

Navigating with
Double Arrow Keys

The double right and double left arrows (and) at the top of the
Acrobat Reader window are the go-back and go-forward functions. The go-
back button takes you to the last page you visited prior to the current page.
Typically, you use to jump back to the main text from a cross reference or
illustration.

Searching for
Topics

Acrobat has a sophisticated search capability. From the main menu, select
Tools | Search. Then select Master Index.

 About This Book Using the CD-ROM Documentation

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xl

Displaying Figures If lines in figures appear broken or absent, increase the magnification. You
might also want to print a paper copy of the figure for better resolution.

Printing the
Documentation

Note: For information on purchasing printed copies of the documents,
see Obtaining Printed Versions of the Documentation on page
xxxviii.

If you would like to read the documentation in paper form rather than on a
computer monitor, you can print all or portions of the online screens.

Printing an Entire Document

To print an entire document, do the following:

1 From the documentation main menu screen, select one of the print-
optimized documents. Print-optimized documents print two screens to a
side, both sides of the sheet on 8.5x11-inch or A4 paper.

2 Select File | Print.

3 Enter the page range you want to print, or select All. Note that the print
page range is different from the page numbers on the documents (they
print two to a page).

4 The document prints.

5 Close the file. Do not leave this file open while viewing the electronic
documents.

 About This Book How To Comment on This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xli

Printing Part of a Document

To print a single page or a short section, you can print directly from the online
version of the document.

1 Select File | Print.

2 Enter the page range you want to print, or select Current.

The document prints, one screen per side, two sides per sheet.

How To Comment on This Book
While we have tried to make this document fit your needs, we are interested
in your suggestions for improving it and urge you to send your comments to
us.

Comment Form A comment form, available in paper and electronic versions, is available via
the documentation CD-ROM. To use the comment form:

1 Select Comments from the Main Menu of the CD-ROM.

2 Follow the instructions provided on the CD-ROM to do one of the
following:

~ Print the paper version of the form, complete it, and either fax or mail it
to us.

~ Access a Lucent Technologies website where you can enter your
comments electronically.

 About This Book How To Comment on This Book

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 xlii

Contact Us Directly If you prefer not to use the comment form, you can contact us directly at the
following address or fax number.

Note: Direct your correspondence to the attention of the Lucent
Technologies Intuity CONVERSANT writing team. Be sure to
mention the title of the book on which you are commenting.

Lucent Technologies
GLS Information Development Division
Room 22-2H15
11900 North Pecos Street
Denver, CO 80234-2703 US

Fax 1 303-538-1741

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 1

1 Application Design Considerations

Overview

This chapter describes general points to consider when developing an
application using the IRAPI library functions, the transaction assembler script
(tas) language, and/or C-language. Specific procedures for developing
application programs are covered later in Chapters 3 through 6.

1 Application Design Considerations Designing a Successful Application

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 2

Designing a Successful Application

A successful application meets the following criteria:

• The end user can easily access and use the service offered.

• The end user is provided with the necessary information.

To design an application to meet these criteria, you must consider the overall
system including the Intuity CONVERSANT system, the end user, and the
data source (may be a separate host machine). See Intuity CONVERSANT
System Application Design Guidelines, 585-310-670, for more information
about designing applications.

Application Development Tools

The product offers different tools you may use to develop applications.
These include Script Builder, IRAPI, and a graphical, PC-based software
development tool.

Figure 6 on page 3 illustrates the typical steps in developing an application
and specifies the tools to use at each step.

1 Application Design Considerations Application Development Tools

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 3

Figure 6. Using Application Development Tools — Example

Compile application program
If using Script Builder, this is done
automatically. If using script language,
use the mkheader and tas commands.

Write/revise application program
using Script Builder or script instructions

Update currently-assigned scripts
If using Script Builder, this is done
automatically. If using script language,
use the newscript command.

Start application on a channel
by calling into that channel or by
executing the <application_name>.T file
in the /vs/trans directory.

Start trace on a process or
channel

using the Script Builder menus or the
trace command.

Does trace
find

problems?

Put the application in service.

No

Yes

1 Application Design Considerations Application Development Tools

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 4

This book describes applications created using an editor to write scripts in the
tas instruction language and compiling them with the tas command and by
using IRAPI, and C-language code.

Note: See Intuity CONVERSANT System Version 7.0 Application
Development with Script Builder, 585-313-206, for information on
developing applications with Script Builder.

See Using Voice@Work, 585-313-207, for information on
developing applications with the graphical tool.

The standard set of tools available to the application developer include the
UnixWare operating system, speech administration tools, tas commands,
and debugging tools.

UnixWare Operating
System Tools

The UnixWare tools include the vi editor, and standard UNIX commands
such as grep, cat, etc.

See the UnixWare documentation set for more information about standard
UNIX tools.

1 Application Design Considerations Application Development Tools

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 5

File Processing
Program Tools

Several commands/programs are designed to help you process files for
application development. These include:

• mkheader — This command creates files for the application to define
memory used by the TAS script (see Chapter 3, TAS Script Instructions).

• tas — This program accepts a file in script source code and produces a
TSM executable file (see Chapter 3, TAS Script Instructions).

• newscript — This command processes changes to all currently assigned
scripts. If you write an application using script language and use tas to
assemble the script, you must use newscript to ensure that the most
recent version of the script is used.

Speech
Administration
Tools

Commands such as add, copy, erase, list are among those tools available
to develop/edit speech files located in the default filesystem,
/home2/vfs/talkfiles.

1 Application Design Considerations Application Development Tools

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 6

Debugging Tools Debugging tools include trace, truss, debug, and untas. The trace script
instruction monitors specific DIPs and/or channels while the script is running
and stores the information in a buffer; use the trace command to display this
information.

For more information about the trace script instruction, see Appendix B,
Summary of TAS Script Instructions (408). See Appendix A, “Summary of
Commands,” in Intuity CONVERSANT System Version 7.0 Administration,
585-313-501, for more information about the trace command.

The irTrace(3IRAPI) functions support a variety of tracing operations
including:

• channel level tracing

• process level

• all errors tracing

• compatibility with db_put (tas debugging tool) tracing for output to the
trace command

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 7

2 Application Structure

Overview

This chapter provides application developers with the information required to
name, organize, and structure files when developing an application. It
contains an overview of the basic tools available with the system, and
includes information to help you:

• Develop speech files and application programs

• Organize files

• Establish naming conventions for files

• Develop a coding style that is easy to maintain

2 Application Structure Application Components

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 8

Application Components

Each application used with the Intuity CONVERSANT system consists of one
or more of the following program components:

• Script

A script functions as a set of instructions the transaction state machine
(TSM) process uses to run the application.

• Data interface process (DIP)

A DIP performs operations not easily performed in script instructions,
such as extensive calculations or interfacing to a host machine. You must
write a DIP module in C-language. Writing a DIP also requires an
understanding of the UnixWare operating system. See Chapter 4, Data
Interface Processes, for more information on writing a DIP.

• IRAPI library functions

These functions provide high-level, C-language interfaces to accomplish
both voice-processing and telephony functions.

• extend functions

The extend function is a TSM instruction that executes customer-written,
C-language code.

• speech files

2 Application Structure Directory Structure for Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 9

Directory Structure for Applications

When developing applications for use with the Intuity CONVERSANT system,
it is important to understand the directory structure for application
components.

Table 1 on page 9 describes the directory location of the most common
application components.

Table 1. Directory Location for Application Components

Component Location

script

DIP

IRAPI function

extend function

speech file

2 Application Structure Conventions for Naming Files and Programs

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 10

Conventions for Naming Files and Programs

To make files easy to identify and to meet the requirements of the application
compiler, the system uses naming conventions for the files and programs.
Most of the naming conventions consist of prefixes and suffixes that make the
programs and files easy to classify into a group or type. The application
name is often part of the name of the file or the program.

Table 2 on page 10 describes files and program names; information provided
by the application developer is shown in bold-italics.

Table 2. File and Program Naming Conventions

File and/or Program Description Examples

name.c This is a C-language source program. hostmeas.c or
 msg1hlr.c

name.o This is a compiled C-program in which
external references are not resolved.

hostmeas.o or
msg1hdlr.o

1 of 4

2 Application Structure Conventions for Naming Files and Programs

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 11

name.h This is a header file that contains structures
and identifier definitions that do not require
space allocation. This allows separately
developed modules to use the same header
files without repeating header file
references in several places.

et.h or
hwrtype.h

DIPN Each DIP is referenced by the name DIPN
where N is a number or a word. See
Chapter 4, Data Interface Processes, for
more information on DIPs.

DIP0 or
DIP_test

application_name.t This is a script source file for
application_name.

stock.t

application_name.T This is an executable TAS script that has
been processed using the tas command
with application_name.t as an argument,
or an executable IRAPI application
transaction definition file created with the
defService command.

stock.T

Table 2. File and Program Naming Conventions

File and/or Program Description Examples

2 of 4

2 Application Structure Conventions for Naming Files and Programs

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 12

application_namedef.h This header file defines the
application-dependent user memory for the
TSM. The file is produced by running the
associated executable version of
application_name_aloc.c or by using the
mkheader command.

stock_aloc.c

application_name_aloc.c This application-dependent program
allocates user memory for the database
structures in the script. The script uses the
structures as temporary work spaces and
for communicating with the internal data
processes. When the program is executed,
it produces the header file
application_namedef.h. This header file
defines the addresses of variables used by
TSM. The mkheader command is used in
creating and executing this program.

stock_aloc.c

application_name.D This file contains descriptions of application
variables that normally are used as event
counters.

stock.D

Table 2. File and Program Naming Conventions

File and/or Program Description Examples

3 of 4

2 Application Structure Conventions for Naming Files and Programs

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 13

infile.application_name This file is created by the application
developer. It lists each coded speech file
and the associated ASCII phrase by which
the files are identified by the script (when
Script Builder is not used).

infile.stock

list.application_name This file is created by the numasgn
command (when Script Builder is not used).
It consists of the infile.application_name
file plus the talkfile number, an application-
identifying string, and phrase numbers. The
list.application_name is given as the
argument of the tfile script instruction
(Chapter 3, TAS Script Instructions).

list.stock

application_name.pl This is the talkfile created by Script Builder. stock.pl

Table 2. File and Program Naming Conventions

File and/or Program Description Examples

4 of 4

2 Application Structure Coding Style

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 14

Coding Style

Establishing a consistent coding style makes the programs and scripts
readable by other developers and makes debugging and maintaining them
easier and quicker. Recommendations are made here concerning define
statements, enum definitions, labels, and inline comments.

Define Statements Define statements used in naming addresses and numerical data make the
program more understandable by explaining a value. For example, referring
to the value -10 as MISTAKE is easier to interpret and understand:

#define MISTAKE (-10)/* 1 of 15 values returned by getname */ .
.
.
.
jmp(r.3==MISTAKE, CORRECT)

You can put define statements in the header files and in the program by using
C-language #include statements that link the definitions to the program code
during assembly or compilation. Use a define statement only once for the
same memory location or value. By convention, define statements are in
uppercase letters. They may have underscores (_), but no embedded
spaces.

You can use one file with a set of defines for both the script and a DIP. This
ensures consistency within an application and makes it easier to change the
defines.

2 Application Structure Coding Style

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 15

Note: If your script contains a large number of define statements, TAS
may report messages such as the following during compilation,
where script.t is the script source file and 1068 is the line in which
the define appears:

script.t: 1068: too much defining

The limit to the number of define statements that a script can have
depends on the number of defined macros and their size. If this type
of message appears, reduce the number of define statements in your
script.

The C preprocessor symbol __TAS__ is defined for TAS scripts. It may be
used in source files used by both TAS and the C compiler.

Enum Definitions The tas compiler supports C-language enum constant definitions commonly
used in header files. Therefore, you can use enum constant names
whenever you use a #define constant.

Script Labels A label is a C-style identifier followed by a colon (:). It marks the instructions
that follow it. By convention, labels for major blocks of code are in uppercase
letters. Labels for subordinate blocks of code are in lowercase letters. All
labels must begin with an alphabetic character.

Some examples of labels are

2 Application Structure Coding Style

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 16

GREET:
talk(“hello”)
rts()

GET_ID:
/* COMMENTS */
jmp(r.3 == 0, strt_idloop)
...

strt_idloop:
getinput(ch.DG, 9)
...
rts()

The uppercase labels GREET and GET_ID identify major blocks of code or
subroutines. The lowercase label, strt_idloop, identifies a block of code
under the main subroutine GET_ID.

Inline Comments Inline comments should either precede or be to the right of those lines of
code where an explanation would be useful. For example, an appropriate
comment for a goto script instruction or a subroutine call might be “cleanup
routine” or “send voice response” to reflect the destination. Or, using the
example given above for script labels, the comments for the GET_ID
subroutine might be:

GET_ID:
/* This subroutine collects digits from the caller */
jmp(r.3 == 0, strt_idloop)
...

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 17

3 TAS Script Instructions

Overview

This chapter describes the conventions used in writing a script, along with all
the transaction assembler script (tas) instructions needed to develop the
application script. It provides application developers with the information
required to use the tas language for developing an application.

3 TAS Script Instructions Transaction State Machine

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 18

Transaction State Machine

The transaction state machine (TSM) software process is an IRAPI
application that manages the execution of tas language applications.

A tas language application is comprised of a set of script instructions and
commands. These script instructions, running within the TSM software, are a
sequence of library function calls that manage the low level interactions
required to operate the system. At any one time, the system may run several
occurrences of the same script as well as the execution of several scripts
concurrently within the TSM process.

Based on the arguments in the script instructions, TSM uses IRAPI function
calls to send messages to the system devices and other software processes
that control the access to system hardware or a local or host database.

A TSM script begins to execute when a call is recognized by the Application
Dispatch (AD) process on a channel to which a TSM application is assigned.
TSM gains control of the channel for the script and processes script functions
through the IRAPI. TSM returns ownership of the channel to the AD process
when the call ends.

Both the script and TSM collect call information while a call is in progress. At
the end of a call, TSM combines its data with the script data and sends the
information to the call data handler (CDH). The CDH makes the information
available in reports to the host and the Intuity CONVERSANT system.

3 TAS Script Instructions The Script and Call Progression

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 19

A script can be assembled (using tas), loaded, changed, or replaced without
affecting the other scripts running on TSM or other IRAPI applications running
on the system. To insure that TSM loads the revised script, the newscript
command should be used (see Appendix A, “Summary of Commands,” in
Intuity CONVERSANT System Version 7.0 Administration, 585-313-501, for
more information about newscript).

The Script and Call Progression
This section describes how the system processes a call using a TSM script.

1 The system accepts a call from the central office or switch on a tip/ring or
E1/T1 circuit card.

2 The tip/ring circuit card or E1/T1 circuit card then signals the tip/ring
interface process (TRIP) or T1 interface process (TWIP), respectively, that
it has accepted the call.

3 TRIP/TWIP signals the AD process it has accepted the call.

4 AD checks a service table to determine the service and process required
for the call. In this example, TSM is the selected process.

5 TSM reads the script instructions and allows the script to control the
sequence of events during a call.

6 AD takes control when the call has ended.

The following sections describe call progression with a script in greater detail.

3 TAS Script Instructions The Script and Call Progression

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 20

Call Progression Starting Conditions

Before the script takes control, the following sequence of conditions must be
met:

• A caller dials and reaches the system’s incoming telephone facility.

• The software recognizes the ringing condition.

• AD checks an internal table to determine the script to run for the call.

• All script memory is set to zero and the time-outs are set to their default
values.

Script Control
When all the starting conditions are met, the script takes control and typically
executes the following functions during the call:

• Answers the incoming line (takes it off hook)

• Sends recorded voice messages to the caller

• Listens to touch-tone signals

• Accesses information from the host or from the disk

• Sends information to a host or a local database

• Records transaction events on disk

• Takes action when a caller does not respond

• Signals a termination condition to TSM

3 TAS Script Instructions The Script and Call Progression

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 21

TSM Control

 TSM terminates an active script if one of the following conditions exists:

• The script executes a quit instruction.

• The maintenance software provides commands to seize control of
equipment at any time, thereby terminating transactions on one or more
channels without notice.

• A program error causes a script to terminate, such as when a goto or quit
is missing after the last instruction.

Script Termination

When the script ends, TSM performs the following functions:

• Puts the telephone line on hook if the script did not disconnect

• Stops voice play

• Discards any pending messages from the host

• Sends the CDH a message about the transaction and a copy of the event
memory

• Releases the channel to AD so it will be available for the next call

3 TAS Script Instructions Data Storage

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 22

Data Storage

The script has the following four areas where it temporarily stores data for
each call it handles. TSM clears these areas at the beginning of a new call.

• User memory

User memory is a work area for the script to store database information,
global variables, and data sent to and from the host.

The script writer is responsible for partitioning user space. This must be
done carefully by assigning data addresses or by using the tool
mkheader, discussed in Chapter 2, Application Structure, and Intuity
CONVERSANT System Version 7.0 Administration, 585-313-501.

Each script is allocated 512 bytes for user space, but automatic
allocations ensure up to 51,200 bytes if script data defines require
additional space.

• Event memory

The event memory contains a record of the events that occurred for each
transaction. Event memory consists of 100, 32-bit integers.

• Registers

Sixteen registers, r.0 through r.15, allow the script to manipulate data
outside of user memory. Three of the registers perform special functions.

3 TAS Script Instructions Data Storage

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 23

Register r.0 (and occasionally r.1 and r.2) is a return register that can be
used to indicate the results of a specific instruction. For example, the
dbase instruction (described under Script Instructions on page 33) sets
r.0 to a positive number on successful completion, which indicates the
message contents. In general, a negative number indicates that the
instruction failed. For example, if a database instruction that is supposed
to receive data did not return any data, then r.0 is set to -2 after an
instruction time-out period (45 seconds by default). See the nwitime
instruction later in this chapter or in Appendix B, Summary of TAS Script
Instructions.

Registers can also be used for indirect addressing.

Note: Because most of the instructions store return values in r.0, it is
recommended that this register not be used for general purposes.

Register r.2 and r.3 are used to pass information to subroutines when a
subroutine call is made with up to two arguments specified. The called
subroutine reads the first field of information from r.3 and the second field
from r.2.

• Stacks

A stack is a set of data storage locations that are accessed in a fixed
sequence. The contents of r.1 through r.15 are saved on a stack when a
subroutine is called. Upon return from the subroutine, they are reloaded
with the stack values.

3 TAS Script Instructions Call Data Collection

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 24

Call Data Collection

Both the script and TSM collect call data during a transaction. The script can
store application data in event memory and save any application-related data.
The data might be response time, user ID, request types, number of invalid
selections, and an event counter. TSM collects generic data such as the
script name, channel number, start time, and stop time and stores it in a call
data record.

At the end of a call, TSM copies the generic data it has collected and the
contents of event memory into a call data record and sends it to call data
handler (CDH). Call data is stored in the ORACLE database.

The reports generated from the database are available to the system
operator (see “Reports” in Chapter 8, “Daily Administration”, Intuity
CONVERSANT System Version 7.0 Administration, 585-313-501).

The .D File The .D file is created by Script Builder when you specify call data parameters.
It can also be created manually if Script Builder is not used. The .D file
provides descriptive labels for events when the events are displayed. The
event counter array space may contain event counter integers, strings, or
both. Records beginning with an integer between 0 and 99 are interpreted as
valid event specification records. You do not have to use a 0 or 1 as the first
event counter.

3 TAS Script Instructions Call Data Collection

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 25

The following is an example of the .D file syntax, where WS refers to a tab or
blank space and STR refers to the literal string STR:

event_number [WS STR] [WS label_string]

The following is an example of the .D file syntax, where event memory 1
stores string data and displays it under the label “User Name”:

1 STR User Name

A sufficient amount of event memory space for storage of the strings should
be allocated. This includes 1 byte for the null character at the end. In addition,
the contents of one event counter should not overlap the contents of another
event counter. You should also make sure the script copies the string starting
at the event counter specified in the .D file.

Event data is reported only if it is specified in the service script and the file
/vs/trans/<script_name>.D exists in the proper format. Place all .D files in
the /vs/trans directory. It is important to place strings in the call event space
properly. You must know the length of the string and map it correctly onto the
4-bit events of the event space. Use the command /vs/bin/cddrpt to view
script events.

3 TAS Script Instructions Script Conventions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 26

Script Conventions

This section provides rules that must be followed when writing scripts. They
include the syntax, argument structure and types, and address mode and
format for script instructions.

Script Syntax The syntax used for a script instruction is an instruction mnemonic followed
by any required and optional arguments enclosed in parentheses. There are
some conventions that appear only in this book and are not part of an actual
script. Brackets ([]) indicate an optional argument for an instruction and the
less-than or greater-than symbols (< >) indicate a label instruction for a
program segment.

Table 3 on page 26 lists the characters used in the script syntax.

Table 3. Script Syntax Characters

Character Meaning Example

parentheses
()

Encloses arguments in an instruction load (ch.ONE,ch.TWO)

1 of 2

3 TAS Script Instructions Script Conventions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 27

comma
,

Optional character that separates the
arguments of an instruction
(you may also use spaces to separate
arguments, but the use of commas is
strongly encouraged)

tchars (ch.ONE, ’F’)

period
.

Required syntax character that
separates an argument type and
argument value

r.1 — argument type is a
register, register number is 1

asterisk *
or
ampersand
&

Preceding a type, signifies that the
value is the number of a script register
containing the user space address; type
without an asterisk or ampersand
signifies that the value is an address

*ch.1 — character string at
address in register 1

ch.1024 — character string at
address 1024

Table 3. Script Syntax Characters

2 of 2

3 TAS Script Instructions Script Conventions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 28

Destination and Source Arguments

The address modes are represented in Table 4 on page 28.

Arguments to Script Instructions

Acceptable abbreviations for argument types are shown in the Table 5 on
page 30. The following is an example of an argument format, where type is
one of the argument types listed in Table 5 on page 30, and # is a numerical
value or a define statement or an enum symbol:

type.#

You may write numerical values in decimal (256) or hexadecimal (0x100)
notation. See Define Statements on page 14 in Chapter 2, Application
Structure, for additional information about define statements.

Table 4. Destination and Source Addresses

Address Modes

type.dst All types except immediate and time

type.src All types

ctype.dst Only types char and *char

ctype.src Only types char and *char

3 TAS Script Instructions Script Conventions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 29

Address Modes

The data types are summarized in Table 5 on page 30. The values
associated with character, short, and integer types represent user space
addresses defined in the script or in header files.

Most of the script instructions do not check data typing. Thus, in most
instances, the outcome of using character, short, or integer typing has no
effect on the outcome of the instruction. The instructions are sensitive,
however, to the contents of the specified user space locations. If characters
are required, a null-terminated ASCII string must start at the specified
address. Similarly, a short integer (2 bytes) or long integer (4 bytes) must
start at the specified address if the instruction requires an integer value.

The subsequent instruction descriptions indicate when character values
result in or are required by the ctype.dest or ctype.src descriptions. The
type.dest or type.src descriptions require short or long integer values. Only
the atoi and itoa instructions convert characters to integers and integers to
characters.

Although most instructions allow character typing for integer values and
integer typing for character values, this practice should be avoided. Integer
types must be assigned to even user space byte addresses while character
strings may begin at even or odd locations. The integer types are assigned
values ranging from -32768 to 32767 (short) and -2147483648 to
2147483647 (int).

3 TAS Script Instructions Script Conventions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 30

In general, an integer variable type (int or short) may be used anywhere that
an integer constant (immed) is used. Integer variables allow more flexibility
with instruction arguments, but TSM requires more time to retrieve the integer
variable values.

Table 5. Argument Data Types

Argument
Type

Field
Width
(bytes)

Meaning Example

immed* — Actual value, for example, a number, string,
or string address

4, ”xyz”,

64,”ABC”

time 4 Operating system time value. A value
following (.) is ignored.

t.0

reg 4 Contents of script register r.1

char 1 Character address in user memory ch.VARIABLE

short 2 Short address in user memory sh.SHORT

int 4 Integer address in user memory int.NUMBER

event 4 Address in event memory2 ev.1
1 of 3

3 TAS Script Instructions Script Conventions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 31

*char 1 Register containing address of a character in
user memory

*ch.1

*short 2 Register containing address of a short in
user memory

*sh.1

*int 4 Register containing address of an integer in
user memory

*int.1

*event 4 Register containing address in event
memory†

*ev.1

&char 1 Register containing address of a character in
parent script user memory‡

&ch.1

&short 2 Register containing address of a short in
parent script user memory3

&sh.1

&int 4 Register containing address of an integer in
parent script user memory3

&int.1

script - Name of script (string). A value following (.)
is ignored.3

script.o

Table 5. Argument Data Types

Argument
Type

Field
Width
(bytes)

Meaning Example

2 of 3

3 TAS Script Instructions Script Conventions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 32

Numbers following the dot (.) in argument specification may also be
expressed as simple arithmetic expressions involving addition and
subtraction of integer constants. For example, the argument
char.VARIABLE+12 refers to the character string starting at the user memory

&script - Name of nearest parent script (string). Null
string if there is no parent script. A value
following (.) is ignored.3

&script.o

X - Data passed via the exec instruction. A
value following (.) is ignored. See exec in
Appendix B, Summary of TAS Script
Instructions.

X.0

Chan 4 The channel number on which the script is
running. A value following (.) is ignored.

Ch.0

* The immed argument type specification is optional. Arguments with no type specification are assumed
to be immed.

† Event memory is write-only for the script, since the buffer for this data is maintained inside the IRAPI
library, not TSM.

‡ See details for the subprog instruction in Appendix B, Summary of TAS Script Instructions.

Table 5. Argument Data Types

Argument
Type

Field
Width
(bytes)

Meaning Example

3 of 3

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 33

offset 12 bytes after the offset defined by the VARIABLE symbol. You can
also use C-preprocessor # define symbols, positive and negative numbers,
and parenthetical expressions.

Script Instructions

The following sections detail the script instructions according to similarities in
functionality.

Voice Output Instructions

In this section, instructions that control speech output are described. These
instructions send voice data to the Tip/Ring, E1/T1, and speech and signal
processing (SSP or SP) circuit cards. Each description is followed by a brief
example using that instruction. An example at the end of this section
illustrates how the instructions described here might be used in a script.

• tfile("listfile 1"[,"listfile2" ...])

The tfile instruction specifies the speech database to use for the script.
The first phrase listfile name, called listfile 1 (see Chapter 2, Application
Structure), is the name of the primary listfile. Its talkfile number is the
default talkfile for speech referenced by phrases and is used for tnum,
tchar, and talk instructions if the talkfile portion of the phrase ID is 0
(unless the talkfile number is changed later by a setalk instruction).

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 34

Each phrase in the talkfile is identified by a unique number and string in
the phrase listfile. Because TAS uses this information, the tfile instruction
must be specified in the script before the first voice output instruction.

The phrase listfile usually is named application_name.pl. Phrases in the
primary listfile are not bound to the talkfile when the script is compiled.
They will be played from the talkfile currently in effect when the talk
instruction is executed. However, any additional listfiles given in the file
instruction have the talkfile and phrase number bound when the script is
compiled. Phrases selected from these listfiles are not affected by
changes in the talkfile that occur during script execution.

The following is an example of the tfile instruction:

tfile("list.stocks")

This instruction tells the TAS to use the list.stocks speech database for
the next transaction.

• tchars(ctype.src[,type.inflection])

The tchars instruction puts its first argument into a queue for speaking.
The first argument is a null terminated string of alphanumeric characters.
This character string is spoken character-by-character, for example,
letters and digits. The second argument, when specified, controls the
speech inflection.

Inflection is indicated in Table 6 on page 35. The default for the inflection
is m for medial.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 35

Table 6. Speech Inflection Values

Inflection One Phrase Multiple Phrases

r Rising Rising on first;
medial on others

m Medial Medial on all

f Falling Falling on last;
medial on others

t Falling Rising on first;
falling on last;
medial on others

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 36

The following example of the tchars instruction directs the script to speak
the contents of INITIALS with falling inflection on the last character and
medial inflection on all other characters.

tchars(INITIALS,’f’)

• tnum(type.src[,type.inflection])

The tnum instruction puts the phrases that speak the numeric value,
specified by the first argument, in a queue. It interprets the numeric value
of the first argument and selects recorded phrases that say the number in
a natural way. For example, 202 is a number that is spoken as a single
phrase — two-hundred-two. The second argument, when specified,
controls the speech inflection.

Note: The tnum instruction does not interpret numeric values in any
language other than English because the rules for concatenating
numbers varies depending on the language. The Enhanced Basic
Speech package currently includes numbers 1–20, 30, 40, 50, 60,
70, 80, 90, 100, 1000, and 10000. This method forms numbers by
combining these standard phrases.

The tnum instruction uses the same arguments for inflection as the
tchars instruction (see Table 6 on page 35).

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 37

The tnum instruction does not support speaking numbers in the billions
and trillions because most of these numbers are too big to fit into an
integer variable. However, the phrases “billion” and “trillion” are included
in the Enhanced Basic Speech package. If your script requires such large
numbers, we suggest that you start with an ASCII string, parse the string
(getting the amounts of billions and trillions as substrings), then convert
the three resulting substrings to integer values and speak them with the
tnum instruction. Insert a talk instruction with the phrase for “trillion” or
“billion,” where appropriate.

In the following example, the tnum instruction tells the script to speak the
numeric value of int.FOUR with falling inflection on the last character and
medial inflection on all other characters:

load(int.FOUR, 4)
tnum(int.FOUR,’f’)

• talk("phrase_ name"[,"phrase_name"]...)

The talk instruction uses one or more “phrase_name” arguments. Each
argument is a group of words enclosed in quotation marks. When the talk
instruction is executed, each “phrase_name” argument is found in the
listfile designated by the previous tfile instruction and is queued for
playing.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 38

Two examples of the talk instruction are:

 talk("Hello this is the Intuity CONVERSANT System")
talk("Please enter your ID")

The “phrase_name” arguments must match a phrase in the
application_name.pl file (see the tfile instruction). For example, the
application_name.pl would also contain these matching phrases.

"Hello this is the Intuity CONVERSANT System"
"Please enter your ID "

To simplify writing the talk instructions used in matching the phrases in
the application_name.pl file with the “phrase_name” arguments in the
talk instruction, the talk arguments may be abbreviated. In this process,
except for the final period or question mark, punctuation is for reference
only and is ignored. Each character or word must be separated by a
space. Also, uppercase characters are converted to lowercase
characters.

Two ways of writing the talk instruction for the first example are:

talk("Hello, Intuity CONVERSANT System")
talk("h, i c s")

Words may be eliminated, but the words or abbreviations used must be
written in the same order as in the application_name.pl file. They will
match as long as the argument has enough of the key words in the
desired phrase.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 39

The following examples illustrate an abbreviated talk instruction.

talk("h i s")
talk("Hello Intuity System")

Only the first letter of a word needs to be used in matching a phrase. Note
in the following examples that although each phrase would match, a
person reading these instructions would find it helpful to see more than
just the first character.

talk("H I 1")
talk("H I 1 S")

Although only the first letter of each word must be specified, it is
recommended that you spell the phrase to the extent that it is uniquely
identifiable.

• talk(type.src)

This version of the talk instruction can be used where there is a variable
phrase number. Instead of entering the “phrase_name” to identify the
speech to be queued for the Tip/Ring and the SSP circuit card, the
corresponding number found by the “phrase_name” in the
application_name.pl file can be used.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 40

An example of the talk instruction is:

#define PHRASE 40
.
.
.
talk(int.PHRASE) /*speaks the application_name.pl file*/
/*phrase the number of which is found at*/
/*address 40*/

• tflush([must_hear_flag][,wait_indicator][,remember_flag])

The tflush instruction typically follows a talk, tnum, or tchars instruction
to force queued phrases to be spoken that could otherwise be terminated
by a touch-tone signal sent by the caller. Under normal operating
conditions, a touch-tone signal terminates any speech activity (voice play
or voice coding) on that channel. (This feature usually is referred to as
talkoff.) Integer variables or registers, as well as literals, may be used for
arguments to tflush.

The tflush instruction also causes queued speech to be output as do the
other wait instructions. Thus, tflush can be used to force speech to be
spoken at appropriate points in the script.

The three optional arguments to tflush can be set to the values listed in
Table 7 on page 41. If tflush is used without any arguments, the default
value of 0 is used for all arguments.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 41

The must_hear_flag option, when set to a non-zero value, disables talkoff
so that speech activity (voice play or voice coding) on the current channel
is not stopped by touch tones. When this option is used with speech
play-related instructions (talk, tnum, tchars), a tflush(1) should follow
those instructions. When using tflush with voice coding (vc), tflush(1)

Table 7. tflush Arguments

Argument Value Value Result

must_hear_flag 0 Touch tones entered during play or voice coding cause play
or voice coding to stop (default).

1 Touch tones entered during play or voice coding do not
cause play or voice coding to stop.

wait_indicator 0 Wait for the play to complete before continuing script
execution (default).

1 Do not wait for the play to complete. Continue script
execution immediately after queuing.

remember_flag* 1 Remember phrases played by this instruction so they may
be played again with the talkresume instruction.

0 Do not remember the speech.

* The remember flag has no effect when playing TTS.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 42

should precede the vc instruction. The talkoff is enabled automatically by
the next wait-causing instruction in the script (see Flow Control
Instructions on page 68 for a list of wait-causing instructions).

Note that if talkoff is disabled, speech play may interfere with incoming
touch tones. Unless the setttfl instruction is used to enable the
type-ahead feature, playing new speech causes any touch tones that
have been typed up to that point to be deleted.

The tflush wait_indicator option, when set to a non-zero value, allows the
script to start a play, then continues script execution immediately without
waiting for completion of the play. By using a wait_indicator of 0, which is
the default, the script does not start execution until a play complete
message is received.

The tflush instruction stores a return value in register 0. If the value is
negative, an error has occurred. If the value is +1, the play complete was
caused by talkoff. If the value is 0, play completed successfully.

The following are examples of the tflush instruction:

talk("You must hear this announcement before continuing")
tflush(1) /*does not end play if caller enters a */

 /*touch tone*/

tflush(1) /*do not end coding if user enters touch */
 /*tones*/

vc(’b’,10,ADPCM32)

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 43

Note: In the second example, any touch tones entered are encoded
along with the speech.

• talkresume(type.offset)

The talkresume instruction plays whatever phrases remain from the last
tflush instruction starting at the point they were interrupted (that is, by
talkoff) plus the given offset in seconds. If the offset is a positive number,
speech is played from a point after the interruption. If the offset is a
negative number, speech is played from a point before the interruption. If
the offset is 0, play starts at the point where the interruption occurred. If all
of the phrases have been played, only a negative offset has any effect.
For example, this allows a developer to include a fast forward or rewind
feature into speech playing.

The talkresume instruction stores a return value in register 0. If the value
is negative, an error has occurred. If the value is 0, play completed
successfully. If the value is +1, the play complete was caused by talkoff. If
the value is +2, there was no speech left to play (that is, talkresume was
given with a non-negative offset when all the speech had been played
already).

For talkresume to work properly, the speech it affects must have been
played originally with the tflush instruction with the optional
remember_flag argument set to 1. This tells the system to remember the
speech that tflush tells it to play and to keep track of where that speech is
interrupted. Subsequent calls to talkresume then have the desired effect

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 44

on this speech. The system remembers the speech it was playing until it
receives another set of phrases to play by subsequent script instructions.
Only one set of phrases can be remembered per channel at a time. (Here,
a set of phrases constitutes whatever phrases were played by the
previous tflush instruction.)

Note: The talkresume instruction cannot be used to resume TTS play.

• tstop([type.scr])

The tstop instruction lets the script developer stop any speech activity on
the script’s current channel.

The following is an example using the tstop instruction:

talk(int.MUSIC) /* Play music to the caller */
tflush(1,1) /* Do not let touch tones turn off music
and don’t wait */
dbase(0, FUDB, ch.ACCOUNT_ID, 8, int.SELL_PRICE, 4)
 /* Get info from host */
tstop(1)
talk("Your account has now been credited with Lucent
Technologies stock for the price of")
tnum(int.SELL_PRICE)

In this example, the script wants the caller to hear music while it
processes the transaction with the host computer. After this processing
completes, the music is stopped, and the caller is informed of the results.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 45

• background(“ phrase_name”,type.src)
background(type.phrase,type.src)

Note: A time division multiplexor (TDM) bus and an SSP circuit card
must be installed in the system for the background instruction to
function properly. See the maintenance book for your platform for
information on installing these components.

The background script instruction starts and/or listens to background
audio on the specified channel. The first argument is a phrase enclosed in
quotation marks (“ ”). The phrase must match a phrase listed in the talkfile
specified by the currently active tfile instruction. The first argument can
translate also to the index number of a phrase in the talkfile; in this case,
the argument must be expressed according to the conventions of
type.src. This syntax is similar to the talk instruction but it only supports
one phrase rather than a phrase list.

If this phrase is not playing already in the system, it is started and its
audio output added to the normal voice response prompts on the current
channel. Other channels may execute the same background
instructions; the audio then is added to those channels while still playing
on the first channel. When the phrase has been played, it starts again at
the beginning. The phrase continues to play as long as at least one
channel requires it. The background audio stops when all channels
requesting it have dropped it. Background speech plays at a volume level
that is 33 percent of the foreground speech.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 46

If the background instruction is successful, it returns a positive value in
r.0. If the instruction is not successful, it returns a negative value in r.0.

The following are possible reasons the background instruction might fail:

~ An attempt to add more than one background audio to a channel failed.

~ The channel reached its limit for listen time slots (maximum seven per
channel).

~ No SSP circuit card is available.

~ All TDM slots are busy.

~ The system reached its limit on the number of background
instructions that can be specified (MAXCHAN).

~ A system call failure occurred.

Note: On a tip/ring channel that is not using the TDM bus to play speech
(for example, a channel set to “talk,” not “tdm”), foreground speech
interrupts background speech. If the TDM bus is used,
background speech is heard continuously.

Below is an example of how the background instruction might be used in
a script.

#define ADD 1
#define DROP 0
tfile("/speech/talk/list.cabnt")
background("begin testing",ADD)
background(201,DROP)

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 47

• setalk(type.talk)

The setalk instruction is used to specify a new talkfile for talk instructions.
The type.talk argument is the id of the new talkfile. After setalk is
executed, the previous talkfile id is returned in r.0 and can be saved for
future use. The setalk instruction overrides the talkfile number contained
in the first listfile specified in the tfile instruction.

Sample Script
Using Voice Output
Instructions

In this example using voice output instructions, the script tells TAS to use the
“stocks.pl” speech database for this transaction, then welcomes the caller to
the application. The script plays the special announcements, which cannot be
interrupted by touch tones, because of the tflush instruction. The script asks
for the caller’s account number and repeats for the caller what has been
entered. The script tells the caller how many shares they own based on the
value stored at address VOLUME.

MAIN:
#define VOLUME 0
#define INITIALS 4
--
--
--
tfile("stocks.pl")
talk("Welcome to our stock quote system")
talk("A special announcement: our service will be offered

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 48

24-hours a day")
tflush(1)
talk("Please enter your account number")
--
--
--
talk("Your initials are")
tchars(ch.INITIALS)
talk("You currently own")
tnum(int.VOLUME)
talk("shares of Acme Incorporated.")
--
--
--

Data Gathering Instructions

The data gathering instructions get information from a caller or from a stored
database. This section describes the data gathering instructions and provides
examples of those type of instructions. A sample script at this end of this
section illustrates how these instructions might be used in an application.

• getinput(ctype.dst, type.number[, int.recognizer[, int.resource]])

The getinput instruction receives information entered by a calling party
using touch tones, dial pulses, or speech input.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 49

The instruction getinput replaces getdig. Continued use of getdig is
discouraged.

The argument ctype.dst is a character buffer where input data is to be
copied to. The argument type.number indicates the maximum number of
input characters to copy to ctype.dst. The argument int.recognizer is
optional, it indicates the address of the integer value where the
recognition type used to collect input is stored. Possible values include 0
for TT input or some positive integer indicating a recognizer such as
IRD_WHOLE_WORD (see recog_start). The argument int.resource is
optional, it indicates the address of an integer where the resource used to
perform recognition is stored.

getinput has a 10 second default initial digit wait time for input. If the
caller does not enter a digit within the allotted time period, getinput
returns the number of digits received before the timeout occurred. Use
the tttime() instruction to specify desired wait times.

getinput is a wait-causing instruction. Therefore, it automatically forces
any pending or unfinished announcements to be played from this channel.

For information about the getinput instruction in relation to speech
recognition, see Dial Pulse and Speech Recognition Script Instructions on
page 89.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 50

• tttime(type.firstdig,type.interdig)

The tttime instruction allows a script to set the time-out values for
receiving touch tones. The firstdig argument specifies the maximum
number of seconds the script should wait to receive the first touch-tone
digit after executing a getinput instruction. The interdig argument
specifies the maximum number of seconds to wait between two
consecutive touch-tone digits.

There is no limit to the timeout values. The default values are 10 and 10.

The tttime instruction is related to the getinput instruction. If the firstdig
time is exceeded, r.0 is set to 0 and the getinput instruction terminates. If
the interdig time is exceeded, r.0 is set to the number of digits that are
received, transferred to the script buffer, and the getinput instruction
terminates.

In the following tttime example, the script waits approximately ten
seconds for the first touch tone and two seconds between touch tones.

tttime(10,2)

• setttfl(type.flg)

The setttfl instruction allows the script to change the way TSM handles
the touch-tone buffer. Normally, TSM gets rid of any touch tones it has
received for the script when the speech buffer is flushed and speech is
played. The setttfl instruction disables the TSM action of clearing the
touch-tone buffer whenever speech is played.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 51

If the type.flg argument is 1, touch-tone flushing is turned on. If the setttfl
instruction is not used, the default condition sets touch-tone flushing on.

If the type.flg argument is 0, touch-tone flushing is turned off and playing
speech does not cause the touch-tone buffer to be cleared. Another effect
of turning off touch-tone flushing is that any phrases queued in the phrase
buffer are cleared if talkoff is enabled on the channel instead of being
played whenever an instruction that normally causes the phrases to be
played is executed. This is done because phrases that are in the buffer
are assumed to be part of the prompt that the talkoff touch tones affect.
With talkoff enabled, phrases that are already queued are not heard.
Instead, the script advances to the appropriate point based on the
touch-tone input received.

• ttclear()

The ttclear instruction clears the touch-tone buffer. This instruction is
useful for applications in which you want to throw away all typed-ahead
input. The ttclear instruction removes any touch tones in the touch-tone
buffer when the instruction is executed. The number of touch tones
cleared is stored in r.0.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 52

• ttdelim(erase-char, erase-all, delim1, delim2)

The ttdelim instruction sets four control functions and the touch-tone keys
used by the caller to perform those functions. The functions for the
erase-char and erase-all arguments are defined by the system; the
functions for the delim1 and delim2 arguments are defined by the
application developer. The application developer defines the touch-tone
keys used in performing all four functions.

The system-defined functions erase-char and erase-all do not terminate
the collection of touch tones initiated by the getinput instruction and
those characters are removed from the buffer. The developer-defined
functions delim1 and delim2 terminate the collection of touch tones and
those characters remain in the buffer.

The ttdelim instruction works with the getinput and tttime instructions.
For example, after requesting five digits with a getinput instruction,
normally r.0 is set to 5 and the actual digits received are stored at the
destination. Any time the ttdelim instruction is used, the script also has to
check the received digits to determine if delim1 or delim2 was used.

The touch-tone buffer is scanned for the delineators that are in effect
when a getinput instruction is executed.

The values for the ttdelim arguments are shown in Table 8 on page 53:

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 53

The following functions and characters might be specified for the
instruction:

ttdelim(’#1’,’#*’,’*1’,’*2’)

Table 8. ttdelim Arguments

Value Meaning

-1 Function is not used (default)

0 Do not change value of current function

’c’ or ’cc’ New value where c is:

 0–9

 #

 *

 A–D (only on extended keypad, such as an operator
console)

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 54

Script routines written by the application developer must check for *1 and
*2 in the buffer. If the ttdelim instruction uses only one argument, then a
default value must be entered for the other three arguments. An example
of a ttdelim instruction using only the erase-all function is
ttdelim(-1,’#’,-1,-1) . Whenever erase-char and erase-all are used in a
script, a delim argument is probably used to allow a caller to end
touch-tone entry. This argument indicates to the getinput instruction that
although it may have received the maximum number of digits, a caller may
make a mistake and may want to erase some digits and re-enter them.

To allow for the extra digits requested by a delim1 or delim2 argument, the
getinput instruction should specify more digits than it needs. For
instance, if a 5-digit entry is required, but it is anticipated that a caller
might enter all incorrectly and need to erase them, getinput would require
a minimum of 7 digits to accommodate the two-digit delineator for
erase-all.

Characters Meaning

#1 Erase one character

#* Erase all characters

*1 Get operator

*2 Play help message

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 55

Based on the previous arguments for the sample ttdelim instruction
shown earlier, the getinput instruction would have the results given by
the examples in Table 9 on page 55.

The time-outs for the system-defined functions, erase-char and erase-all,
are the same. The tttime instruction only uses the firstsec argument
once, but it repeatedly uses the interdig argument to wait the maximum
amount of time specified for receiving the next digit. The application
developer needs to write code to implement the functions. For example,
delim2 would need a talk instruction to play a help message.

Table 9. getinput Results

Input r.0 Destination Script Action

12345 5 12345 Use 5 digits

123#*45678 5 45678 Use 5 digits

12*1 4 12*1 Transfer to operator

*1 2 *1 Transfer to operator

12*2 4 12*2 Play help message and
reprompt for input

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 56

• dbase(dip,type.mcont_field, type.dst,mbyte,type.src,nbyte)

The dbase instruction passes information between the script and a host,
a local database, or any other DIP.

The dip argument specifies the DIP that is to receive the message. A DIP
number or name may be used for dip. If dip is a name, it must be in the
form “name”. The type.mcont_field argument is a value sent to the DIP
that the DIP uses to identify the message type and determine its next
action. The ctype.dst argument specifies the destination script address for
the data. The mbyte argument specifies its length. The type.src argument
specifies the script address where data sent to the DIP is stored; the
nbyte argument specifies its length. If type.src is a register, nbyte is
ignored and four bytes are sent.

If the dbase call is successful and returns data to the script, r.0 is set to
the mcont value of the DIP message. If the DIP is not running, r.0 is set to
-1. After a response timeout (default value is 45 seconds), r.0 is set to -2.
To change the default value for the timeout, use the nwitime instruction
described later in this chapter. If nbyte is zero (0), no information is
transferred to the DIP. If nbyte is negative, no message is sent to the DIP,
but the dbase call may wait (if mbyte is not negative) for a message from
the DIP. If mbyte is negative, no return data is expected from the DIP. r.0
is set to zero (0) and script execution continues immediately after dbase
is executed.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 57

In the following example, the dbase instruction tells the script to send
ch.INFO_TO_HOST (nine bytes) to the host. The DIP “Bankdip”
processes the information to the host based on the action defined by
ACCOUNT_BAL and stores the result in ch.INFO_FROM_HOST (up to
55 bytes).

dbase("Bankdip",ACCOUNT_BAL,ch.INFO_FROM_HOST,
55,ch.INFO_TO_HOST,9)

• dipterm(dip[,flag])

The dipterm instruction specifies to TSM that a DIP receives a
termination message when the script terminates. A DIP number or name
may be used for dip. The dipterm instruction may be called repeatedly
with different DIP numbers or names. The termination message goes to
all DIPs specified.

The optional flag may be used to turn off a dipterm setting. Valid values
for flag are 1 and 0. If flag is 1 (the default), dipterm is set for the dip. If
flag is 0, dipterm is reset for dip.

The following dipterm instruction example tells TSM that DIP0 will receive
a termination message when the script completes.

dipterm(0)

For additional information about the dipterm instruction (such as reasons
for termination reported in the header file tsm_dip.h), see Appendix B,
Summary of TAS Script Instructions.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 58

Sample Script
Using Data
Gathering
Instructions

In this example, the script instructs the system to prompt the caller for a
passcode. The script waits for the caller to enter three touch tones and stores
them in ch.PASSCODE. The script then tells the system to send
ch.PASSCODE (3 bytes) to the host. The host performs ACCOUNT_BAL
processing, then returns up to 55 bytes of data. That data is stored in
ch.INFO_FROM_HOST.

#include HOST_HEADER.h
#define PASSCODE 0
#define INFO_FROM HOST 4

MAIN:
--
--
talk("Enter your 3-digit pass code.")
getinput(ch.PASSCODE,3)
--
--
--
dbase(0,ACCOUNT_BAL,ch.INFO_FROM_HOST,55,ch.PASSCODE,3)
--
--
--

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 59

Data Manipulation Instructions

The data manipulation instructions perform arithmetic data functions and also
change the contents of memory. Following the list of the instructions and
descriptions of each are two sample scripts which illustrate how the
instructions might be used in an application. For additional information about
each of these instructions, see Appendix B, Summary of TAS Script
Instructions.

• and(type.dst,type.src)

The and instruction implements bitwise AND operations on the type.dst
and type.src arguments, allowing scripts to decode or encode bit flags
stored in a single integer. The result is stored in type.dst.

• atoi(type.dst,ctype.src)

The atoi instruction converts a null terminated character string at the
source to an integer value and stores that value at the destination. If an
error occurs, a 0 is returned at the destination.

• decr(type.dst,type.src)

The decr instruction decrements the destination value by the source
value.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 60

• div(type.dst,type.src)

The div instruction divides the destination value by the source value. The
integer quotient is stored in type.dst. The remainder is discarded. The div
instruction returns a value of 0 in r.0 if no error occurred. If division by 0 is
done and a -1 value is returned in r.0, the result is set to the largest
positive or negative integer, depending on whether type.dst was positive
or negative originally.

• dtitos(type.src,type.dst)

The dtitos instruction converts date and time data from internal UnixWare
system form to “tm” structure form. The type.src argument should contain
a number representing the UnixWare system internal representation of
time (number of seconds since 00:00:00 GMT January 1, 1970). It is
recommended that the integer type be used for this argument. The
resulting “tm” structure (9-integer structure defined in ctime(3C) in the
UnixWare Operating System API Reference) is put in type.dst (that is,
type.dst defines a starting address for the result).

The dtitos instruction returns 0 in script r.0 if the conversion is successful.
A -2 is returned in r.0 if TSM could not allocate enough space in script
memory to store the result.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 61

• dtstoi(type.src,type.dst)

The dtstoi instruction converts date and time data from “tm” structure to
internal UnixWare system form. The “tm” structure is specified by the
type.src argument. The result is placed in type.dst. It is recommended
that the type.dst argument use type integer to guarantee that the correct
value is received. This instruction is the complement to the dtitos()
instruction.

The dtstoi() instruction returns 0 in script r.0 if the conversion is
successful. A value of -1 is returned in r.0 if the “tm” structure indicated by
type.src contains incorrect values or is at a location outside the script data
area.

• incr(type.dst,type.src)

The incr instruction increments the destination value by the source value.

• itoa(ctype.dst,type.src)

The itoa instruction converts a numeric source value into a null
terminated character string stored starting at the destination address.

• load(type.dst,type.src)
load(ctype.dst,ctype.src)

The load instruction converts the source value to the data type of the
destination and stores it at the destination.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 62

• mul(type.dst,type.src)

The mul instruction multiplies the destination value by the source value.
The product is stored in type.dst. Overflow is not checked; multiplying
large values may result in a negative number.

• not(type.dst)

The not instruction performs a 1’s complement operation on the type.dst
argument, allowing scripts to decode or encode bit flags stored in a single
integer.

• or(type.dst,type.src)

The or instruction implements bitwise OR operations on the type.dst and
type.src arguments, allowing scripts to decode or encode bit flags stored
in a single integer. The result is stored in type.dst.

Sample Scripts
Using Data
Manipulation
Instructions

The following are two sample scripts using the data manipulation instructions
as they might be used in an application. The second example uses several
instructions introduced later in this chapter.

In the following example, the script asks the caller to enter the number of
widgets they want to order, then waits for three touch tones and stores them
in ch.QUANTITY. The script then converts the characters in ch.QUANTITY
to an integer and stores it in r.1. The script tells the caller how many widgets
they ordered based on the integer in r.1. Using the mul instruction and r.1,

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 63

the script multiplies the integer in r.1 by 5 (5) to get the total cost of the order.
The script then tells the caller the total cost of the order.

 MAIN:

 talk("Enter the number of widgets you wish to order")
 getinput(ch.QUANTITY,3)
 atoi(r.1,ch.QUANTITY)
 talk("You have ordered")
 tnum(r.1) /*spoken as a number, not a string of digits*/
 talk("widgets")
 talk("at a cost of $5 each for a total cost of")
 mul(r.1,5)
 tnum(r.1,’f’)
 talk("dollars.")

In the following example, the script sets the value of r.1 to 0, then asks the
caller to enter their password. The script waits for four touch tones, stores
them in ch.PASSWORD, then compares ch.PASSWORD with ch.GOOD. If
they match, the script continues. If they do not match, as this example
illustrates, the script jumps to the retry instructions where it tells the caller that
the password is invalid. The script increments r.1 by 1. If r.1 equals 3, the
script jumps to the good-bye subroutine. If r.1 is not equal to 3, the script
asks the caller to re-enter the password. The script then goes back to the
validate subroutine. In this example, the caller can enter an invalid password
up to three times before the script terminates in good-bye.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 64

start:
load(r.1,0)
talk("Enter your password.")

validate:
getinput(ch.PASSWORD,4)
strcmp(ch.PASSWORD,ch.GOOD)
jmp(r.0 !=0,retry)
--
--
--
retry:
talk("I’m sorry, that was an invalid password")
incr(r.1,1)
jmp(r.1 == 3,good-bye)
talk("Please re-enter your password.")
goto(validate)
good-bye:
talk(“Goodbye”)
quit()

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 65

String Instructions

The following script instructions recognize the use of the double-quote syntax
to indicate a literal, null-terminated ASCII character string. Although the talk
instruction also uses a double-quote syntax, the meaning is different; it
implies a talkfile search for phrases that match the string.

• strcmp(ctype.src,ctype.src[,type.len])

The strcmp instruction allows a script to compare two character strings.
The ctype.src arguments can be either an address or a literal string. The
results of the comparison are returned in r.0. The return value is
interpreted as follows:

If the optional type.len argument is used, the comparison is limited to the
number of characters specified by that argument.

If r.0 is … Then …

=0 The strings are equal (exactly the same)

<0 The first string is lexicographically less than the second
string

>0 The first string is lexicographically greater than the
second string

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 66

Below are two examples of the strcmp instruction. In the first example,
the strcmp instruction returns a value less than 0 because “abc” is
lexicographically less than “abx.” In other words, the string “abc” appears
before the string “abx” in an alphabetical listing. In the second example,
the return value is greater than 0 because “abcd” appears before “abx” in
an alphabetical listing even though “abcd” has more characters than
“abx.”

strcmp(“abc”,“abx”)
strcmp(“abx”,“abcd”)

Note: Capital letters are always lexicographically less than lowercase
letters and numbers are always lexicographically less than letters.

• strcpy(ctype.dst,ctype.src[,type.len])

The strcpy instruction allows a script to copy a source string to a
specified destination. The ctype.dst argument specifies the destination
address to which the source string (including the terminating null
character), specified by the second argument, is copied. The first
argument must be an address. The second ctype.src argument specifies
the source string to be copied. This argument may be a literal string or the
address at which the first character of the string is located.

If the optional type.len argument is used, the strcpy instruction copies, at
most, the number of characters specified by that argument. The result
may or may not be null terminated, depending on whether a null character
was copied before the type.len character limit was reached.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 67

Below are examples of the strcpy instruction. In the first example, the
string ch.ORIGINAL is copied to the destination ch.COPY. In the second
example, the string “Welcome” is copied to the destination ch.COPY.

strcpy(ch.COPY,ch.ORIGINAL)
strcpy(ch.COPY,“Welcome”)

• strlen(ctype.src)

The strlen instruction computes the length of the string specified by the
ctype.src argument. The type.src argument can be a literal string or the
location of a string. The length of the string (that is, the number of
characters in the string) is returned in r.0.

In the following strlen instruction example, getdig looks for nine touch
tones and stores them in ch.SOCIAL_S_NUM. The strlen instruction
computes the length of the string stored in ch.SOCIAL_S_NUM and
stores the value in r.0. Then the jmp instruction looks at the value in r.0
and, if it is less than nine, goes to the code at invalid_num.

getdig(0,ch.SOCIAL_S_NUM,9)
strlen(ch.SOCIAL_S_NUM)
jmp(r.0< 9,invalid_num)

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 68

Flow Control Instructions

Flow control instructions determine the order in which the instructions are
executed. Each instruction is listed with a brief description. An example of a
script using these instructions follows the descriptions.

• case(type.src,type.src,<subroutine_label>,<goto_label>)
case(type.src,type.src,<subroutine_label()>,<goto_label>)
case(type.src,type.src,<subroutine_label(type.src)>,<goto_label>)
case(type.src,type.src,<subroutine_label(type.src,type.src)>,
<goto_label>)

The case instruction provides a conditional subroutine call that compares
two source values. If the source values are equal, the subroutine is called,
and on return, execution continues at the goto_label address. If they are
not equal, the statement does nothing. If the subroutine_label is a
negative number, no subroutine call is made and execution continued at
the goto_label. If the goto_label is negative, execution continues with the
next instruction.

Subroutine calls invoked in a case statement behave like other subroutine
calls (that is, with arguments allowed and register values saved on the
stack).

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 69

• event(event_type[, subroutine_label])
event(event_type[, type.offset])

The event instruction allows script execution to continue after certain
events occur, such as when the caller hangs up or the script detects
another external event. The event script instruction causes a jump to the
subroutine_label given when events defined by the event_type argument
occur. The event types are defined in the /att/msgipc/tsm_dip.h header
file.

If valid arguments are passed, the event instruction returns an integer
offset in r.0. This offset is the value of the previous subroutine_label (if
any) used for the event. It may be saved and used later as the type.offset
argument to the event instruction to reset the subroutine_label back to its
previous value. (This is useful for external script functions which need to
handle events and want to restore their disposition to whatever the calling
script had set before returning.)

If event_type is not valid or type.offset is larger than the text space of the
script, a value of -3 is returned by the event instruction.

A negative value for type.offset may be used to set no subroutine label for
an event, causing the default action to be taken when the event occurs
(see below). If no subroutine_label or offset is given, the event instruction
returns in r.0 the value of the subroutine_label currently being used (or -1
if none) without changing the disposition for the event.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 70

The event types are described briefly below. See Appendix B, Summary
of TAS Script Instructions, for more information about the event instruction
and event types.

~ EHANGUP specifies a hangup event. This event is triggered when dial
tone, no loop current, disconnect, or glare conditions are detected on
the channel.

~ EDIALTONE and ESTUTTERDT specify a dial tone event. These are
special cases of the EHANGUP event. Normally, EHANGUP is
triggered when dial tone or stutter dial tone is detected (and the script
is not expecting dial tone). EDIALTONE and ESTUTTERDT are used
to treat dial tone detection separately from EHANGUP.

~ ESOFTDISC specifies a soft disconnect event. This event is triggered
by sending a SOFT_DISC message to TSM from a DIP. If an event
subroutine is set, it receives the following values when the event
occurs:

r.0 Event type (ESOFTDISC)

r.1 Value from arg[1] of SOFT_DISC message

r.2 Value from arg[2] of SOFT_DISC message

r.3 Number of the DIP that sent the SOFT_DISC message

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 71

~ EDIPINT specifies a DIP interrupt event. This event may be triggered
by sending a DIP_INT message from TSM to a DIP. If an event
subroutine is set, it receives the following values when the event
occurs:

~ ETTREC specifies a touch-tone received event. This event can be
used to allow a dbase, sleep), tflush, or tic instruction to be
interrupted if a touch tone is received while they are being executed.

Note: The tflush instruction is only interrupted if its first argument is 1
(that is, talkoff is disabled).

If an event subroutine is set, it receives the following values when the
event occurs:

r.0 Event type (EDIPINT)

r.1 Value from arg[1] of DIP_INT message

r.2 Value from arg[2] of DIP_INT message

r.3 Number of the DIP that sent the DIP_INT message

r.0 Event type (ETTREC)

r.1 Touch tone character that caused the interrupt

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 72

If no event subroutine is set for ETTREC, the instructions are not
interrupted by touch tones.

~ EANSSUP specifies an answer supervision event. This event is
triggered when answer supervision (rather than speech energy
detection) is detected as available for a any telephony interface. This
includes T1 (E&M), E1 (CAS), and PRI. It also includes Tip/Ring and
LSE1/LST1 when the system is connected to a DEFINITY ECS or
compatible switch and the DTMF Feedback to VRU feature is available.

• exec(ctype.script[,type.data,type.nbytes][,exitval])

The exec instruction allows a script to execute another script or IRAPI
application.

The ctype.script argument is the name of the script to be executed. The
type.data and type.nbytes optional arguments are used to pass a block of
data to the new application. The type.data argument specifies the location
of the data and the type.nbytes argument specifies the size, in bytes, of
that data. If type.data is a register or immediate type, type.nbytes is
ignored and a size of an integer (4 bytes) is assumed. These two
arguments work like the last two arguments of the dbase instruction.

r.2 Number of touch tones received since last getdig or
ttclear

r.3 Instruction interrupted: ’t’ - tflush, ’s’ - sleep,
 ’d’ - dbase, ‘i’ - tic

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 73

The exitval argument is an optional exit value used when the parent script
is terminated before the new child script is run. It is passed to a DIP
specified by the dipterm instruction in the same way as the argument to
the quit instruction and may be specified without using either type.data or
type.nbytes. If no exitval is given, -1 is used by default. See Appendix B,
Summary of TAS Script Instructions, for more information on the exec
instruction (see also: subprog).

• execu(ctype.script[,type.data,type.nbytes][,exitval])

The execu instruction has the same format and functionality as exec.
Using execu instead of exec, however, causes the new script to inherit,
the user data space of the parent script intact. Essentially, this feature
allows a script to pass all user data to the new script. For this to be useful,
however, the new script must have its data defined in the same way as the
parent script (that is, structures, variables, etc., must be defined for the
same locations). The data definition of the new script is used to overlay
the actual data of the parent script (see also: subprog).

• goto(<label>)

The goto instruction is an unconditional jump to the instruction indicated
by the label.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 74

• ibrl(type.dst,type.src,<label>)

The ibrl instruction, which means increment and branch if less,
determines if another pass should be made through a loop. The ibrl
instruction normally is placed at the end of the loop. The destination value
is incremented by one and then compared to the source value. If the
destination is less than the source value, a jump to the labeled instruction
is executed and the loop is repeated. If the destination is greater than or
equal to the source, the next instruction is executed.

• jmp(type.src rel_op type.src,<label>)

The jmp instruction is a conditional jump to the labeled instruction. The
rel_op argument compares the values of the two source operands. If the
condition is true, a jump to the labeled instruction is executed; if false, the
statement does nothing. The rel_op has six C-style operators:

If rel_op is . . . Then . . .

== Equal

!= Not equal

< Less than

<= Less than or equal to

> Greater than

<= Greater than or equal to

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 75

• <label>:

A label definition assigns a label to a program segment. It is not the
same as label() (described below), which is a subroutine call.

• <label>([type.src] [,type.src]])

The label instruction is used to call a subroutine found at the address
indicated by the <label>: of the segment. A return address and the
values in all registers except r.0 are saved on a subroutine stack. An
optional first argument is stored in r.3 and an optional second argument is
stored in r.2 for use by the called subroutine; otherwise, the registers are
left unchanged.

• nap(type.src)

The nap instruction makes the script do nothing for the specified number
of centiseconds (hundredths of a second). See sleep.

• nwitime(type.src)

The nwitime (next wait instruction time) instruction sets the maximum
amount of time the script waits for the completion of the next instance of
the following wait-causing instructions. The type.src argument specifies
the number of seconds to wait.

~ background

~ dbase

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 76

~ phreserve

~ sr_talkoff

~ tic

~ tstop

• quit([exitval])

The quit instruction terminates the script voluntarily. An optional
parameter is passed to a DIP specified in a dipterm instruction. This
exitval is also returned to the parent script in register 1 (r.1) if the script
was executed with the subprog() instruction.

• rts()

The rts instruction is the mechanism for returning from a subroutine call.
The saved values for all script registers except r.0 are restored.

• scrinst([ctype.script])

The scrinst instruction enables an application script to find out how many
instances of a script are running currently on the system. Based on the
value returned by this instruction, the script may choose to prohibit
execution of another instance of the script (via the exec instruction) or the
script may quit if it is performing a check on itself and has exceeded the
limit.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 77

The ctype.script optional argument is the script, or service, name. If no
script name is given, the script executing the instruction is assumed. This
instruction sets the value of r.0 to the number of instances of the given
script at the time the instruction is invoked.

There are several possible uses of scrinst based on the ways in which a
script may be started:

~ Incoming call — It is suggested that the method of limiting the number
of scripts started with an incoming call be left as it is. That is, do not
assign a service to a number of channels greater than the desired limit.
If the number of channels assigned to a script exceeds the limit, a
script still may check the instance count as its first task and quit before
answering the call if the instances exceed the limit.

~ exec — The exec script instruction is the primary means by which an
instance limit may be exceeded. Therefore, any application script
concerned about running too many instances of another script should
use scrinst for that script before using exec.

In this case, it is important to avoid a wait condition in the interval
between scrinst and exec. This could cause other scripts running
simultaneously that are performing the same test to receive identical
results from scrinst before any of them perform the exec instruction.
Use tflush before scrinst to play any speech that is queued. If tflush
is not used, the exec instruction causes the speech to play and the
script waits for the play to complete before executing the exec
instruction.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 78

~ Soft seizure — Scripts started by a soft seizure request from a DIP
may use scrinst to check themselves against an instance limit as their
first task, similar to the way scrinst may be used if the script is started
by an incoming call. If the script determines that it cannot continue, it
may signal the DIP that started it by using the dipterm instruction and
calling quit with a specific value that the DIP may check.

• sleep(type.src)

The sleep instruction makes the script do nothing for the number of
seconds specified by the argument. See nap.

• subprog(ctype.appname[, type.data, type.nbytes])

The subprog instruction allows a script to execute another TAS script or
IRAPI application as a subprogram, and then return to the parent script
with data from the subprogram.

The ctype.appname argument is the name of the script to be executed.
The type.data and type.nbytes optional arguments are used to pass a
block of data to the new application. The type.data argument specifies
the location of the data and the type.nbytes argument specifies the size,
in bytes, of that data. If type.data is a register or immediate type,
type.nbytes is ignored and a size of an integer (4 bytes) is assumed.
These two arguments work like the last two arguments of the dbase
instruction.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 79

subprog returns values in both register 0 (r.0) and register 1 (r.1). r.0 is 0
if subprog was successful. It contains a negative value to indicate failure.
If successful, subprog also returns in r.1 whatever value was passed to
the quit instruction by a called TSM script application, or whatever value
was passed to irReturn by a called IRAPI application. See Appendix B,
Summary of TAS Script Instructions, for more information on the subprog
instruction (see also: exec).

Sample Script
Using Flow Control
Instructions

The following is an example of a script using the flow control instructions.

#define DECIDE 0

#define COUNTER 2

INTRO:

talk("Welcome to our company")

load(r.1,0) /*initialize loop counter to 0*/

start:

talk("To speak to an operator, enter 1")

talk("To hear your account balance, enter 2")

getinput(ch.DECIDE,1)

case(ch.DECIDE,’1’,OPERATOR,continue)

case(ch.DECIDE,’2’,ACCT_BAL,continue)

--
--
--
OPERATOR:

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 80

talk("Please hold, an operator will be with you shortly")

--

--

(code to dial operator, transfer call)

--

--

(call returns)

rts()

ACCT_BAL:

nwitime(20) /*maximum seconds to wait for host

confirmation*/

--

--

(query host)

--

--

talk("Your account balance is")

tnum(int.FIVE,’f’)

rts()

continue:

ibrl(COUNTER,r.1,start)

talk("Thank you for calling")

quit()

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 81

In this example, the instructions first define DECIDE as 0 and COUNTER as
2. The script then welcomes the caller to the system and initializes r.1 as
containing 0. The script asks the caller to enter 1 to talk to an operator and 2
to hear the account balance. The getinput instruction tells the script to wait
for one touch tone and store it in ch.DECIDE. The case instructions tell the
script that if the caller enters ’1’, to go to the OPERATOR subroutine, then to
the continue code and if the caller enters ’2’, to go to the ACCT_AL
subroutine, then to the continue code. Regardless of what the caller enters,
script execution continues with the next instruction.

The OPERATOR subroutine would contain code telling the script to dial out to
an operator and transfer the call. (This code is omitted from this example to
make it simple, as shown by the use of --). When the caller has finished
talking to the operator, the script continues with the next instruction.

The ACCT_BAL subroutine tells the script to wait a maximum of 20 seconds
for the host information requested (nwitime instruction). The call to the host
is not included here to keep the example simple. After the host has returned
the information, the script tells the caller what the account balance is based
on the value in the tnum instruction. The script then continues with the next
instruction.

The ibrl instruction tells the script to compare COUNTER (which was set at 2
at the beginning of the script) with the value in r.1. If r.1 is less than
COUNTER, the script returns to the start code. If r.1 is equal to COUNTER,
the script executes the next instruction. The script then thanks the caller for
calling and quits, voluntarily ending the transaction.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 82

Voice Coding Instructions

Voice coding instructions provide script facilities for adding or removing
phrase numbers to or from a selected speech file. These instructions also
store speech within these or previously-defined phrase allocations. These
facilities may be used, with suitable script prompts, to record user voice or
touch-tone messages.

The feature of ending the voice coding session by pressing a touch-tone key
(referred to as talkoff) can be disabled using tflush(1) before the vc
instruction. This allows the user to encode the touch tones as well as the
speech. See Voice Output Instructions on page 33 for details about the tflush
instruction.

The voice coding instructions are described below. Following these is an
example of a script for voice coding and play.

• phreserve(type.phrase,type.talk,type.time,type.style)

The phreserve instruction creates an area in a talkfile that is used to
store a phrase. This phrase is later encoded by the vc instruction. The
arguments for the phreserve instruction are:

~ The type.phrase argument specifies the phrase id of the phrase to be
created (valid range is 1–65,535).

~ The type.talk argument specifies the talkfile id of the talkfile where the
phrase is stored (valid range is 1–16,383).

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 83

~ The type.time argument specifies the amount of space, or time (in
seconds), to be reserved for a phrase in the talkfile.

~ The type.style argument specifies the coding style and rate to be used.
Valid coding styles and rates are defined in the header file codestyle.h
in the directory /att/include. This file should be included in the script by
an include instruction. If the style specified is not valid, the phreserve
instruction fails.

Valid coding designations are as follows in Table 10 on page 83:

Table 10. Coding Designations

Coding Style Description

ADPCM32 Adaptive differential pulse code
modulation at 32 Kbps

ADPCM16 ADPCM at 16 Kbps

CELP16 code excited linear prediction at 16 Kbps

SBC24 Sub-band coding at 24 Kbps

SBC16 Sub-band coding at 16 Kbps

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 84

If type.phrase is -1, the system assigns a phrase id and returns this id in
r.1. The phrase id can be used to reference the phrase (for example, in a
talk instruction) once it has been coded and stored in the talkfile by the vc
instruction. If type.talk is -1, the system selects the default value 255 for
the talkfile and returns the id of the selected talkfile in r.0.

Note: If there are two phreserve instructions, there must be a vc
instruction between them or the second phreserve instruction will
fail.

When both type.talk and type.phrase are -1, both a phrase id and talkfile
id are chosen by the system and returned in r.1 and r.0, respectively.
These selections start with the largest previously unassigned phrase
number of talkfile 255. Subsequent phrase selections fill unused phrases
of talkfile 255 toward phrase 0. Since r.0 and r.1 can be used implicitly to
store talkfile and/or phrase ids, the script writer must take care to save the
contents of these registers before the phreserve command is executed.

If type.phrase matches the phrase id in the specified talkfile, the existing
phrase is replaced by the new phrase. The values 0 and -1 for the
type.time argument indicate that the phreserve instruction should not
allocate any space. If enough space is available to store the phrase when
coding ends, the phrase is stored. If there is not enough space, an error
message is issued from the vc instruction.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 85

If the instruction is completed successfully, the return values are:

~ r.0 = talkfile id

~ r.1 = phrase id

If the instruction is not completed successfully, the return value in r.0 is
negative.

• phremove(type.phrase,type.talk)

The phremove instruction removes the phrase specified by the
type.phrase argument from the talkfile specified by the type.talk
argument. The valid values for type.phrase are 1–65,535. The valid
values for type.talk are 1–16,383. Type.phrase must be a valid phrase id.
Type.talk may have the value -1. If type.talk is -1, then the talkfile id used
is the current talkfile.

If the phremove instruction is successful, it returns the phrase id of the
phrase removed in r.0. If the instruction is not successful, it returns a
negative value in r.0.

• vc(flag,type.time,type.rate[,wait_flag])

The vc instruction codes speech into a phrase in a talkfile.

For the first argument, ’b’ (for begin coding) is accepted. Another
character value, ’p’ (for prompt) may be used to play a short beep just
before voice coding starts.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 86

The type.time argument specifies the maximum duration, in seconds, of
the coding session. A value ’n’ for type.time specifies a coding session
lasting up to ’n’ seconds. A value of -1 or 0 for type.time specifies the
default maximum duration of 45 seconds. Coding can be terminated at
any time by entering a touch tone.

The type.rate argument specifies the coding rate in kilobytes per second
(Kbps). If the value given for this argument is not a valid rate or type, the
instruction fails.

The feature of ending the voice coding session by entering a touch tone
(referred to as talkoff) can be disabled using tflush(1) before the vc
instruction. This allows the user to encode the touch tones as well as the
speech. See Voice Output Instructions on page 33 for details on the
tflush instruction.

The default value for the optional wait_flag argument is 1, which causes
vc() to return when voice coding is complete. If this argument is used
with a value of 0, vc() will return immediately after voice coding has
started, allowing the script to execute more instructions while doing voice
coding. This is useful for doing voice coding and speech recognition (with
the getinput() instruction) simultaneously. Note that barge-in cannot be
used during simultaneous recognition and coding. Also, recognition and
coding should not occur on the same SSP circuit card. When voice
coding is started without waiting for completion, vc() returns a value of 0
in register 0 (r.0). Voice coding must be stopped at a later time by the

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 87

tstop() instruction with the optional wait_flag argument set to1 to get the
return values (r.0, r.1, and r.2) from the completed voice coding.

If the vc instruction is successfully completed, it returns the phrase id in
r.0. If the vc instruction is not completed successfully, it returns -1 in r.0.
If the vc instruction recorded nothing because the initial silence timeout
was exceeded (see vctime), it returns -2 in r.0. r.1 contains the recorded
message length in seconds (this should be 0 if r.0 is negative). r.2 is set
to 1 if voice coding completed normally, 2 if coding was terminated by a
touch tone (talkoff), and 3 if coding was terminated due to silence
detection, that is, the intermediate silence timeout was exceeded (see
vctime).

• vctime(type.src,type.src)

The vctime instruction allows the application developer to set silence
timeouts. The first type.src argument contains the value for the initial
silence timeout. The second type.src argument contains the value for the
interword silence timeout. The maximum timeout is 30 seconds.

The values for the type.src arguments and the effect on the timeout are
given below:

Value Effective Timeout Value

X > 0 X becomes the timeout value

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 88

This instruction does not give a return value to indicate success or failure.

Sample Script
Using Voice Coding
Instructions

The following example illustrates how the script instructions used for voice
coding work together. The example script is a code segment which:

• Prompts the caller for a talkfile

• Creates phrase 200 in the talkfile the caller specified

• Codes the speech obtained from the caller

• Plays the phrase just coded

• Removes the phrase from the talkfile

Note that in this example, return codes from instructions such as phreserve,
vc, and phremove are not checked by the script. These checks were not
shown in order to make this example as simple as possible. Normally, all
return codes should be examined so that errors can be detected. The
discussion for each instruction describes the details pertinent to the return
codes for that instruction.

#include "/att/include/codestyle.h"
tic(’a’) /*answer the phone*/
tfile("list.example")
talk("enter talkfile")

X = 0 Timeout is turned off

X < 0 Timeout is set to default value (5 seconds)

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 89

getinput(ch.TALK,2) /*get talkfile id*/
atoi (int.TFILE,ch.TALK) /*convert TT number to integer value*/
phreserve(200,int.TFILE,100,ADPCM32) /*create phrase 200*/
vctime(5,10) /*initial timeout 5 seconds*/
 /*interword timeout 10 seconds*/
vc(’b’,100,ADPCM32) /*begin coding*/
talk("the new phrase is")
setalk(int.TALK) /*change talkfiles*/
load(ch.OLD,r.0) /*save old talkfile id)*/
talk(int.200) /*play phrase just coded)*/
setalk(int.OLD) /*change back to old talkfile*/
talk("now removing phrase")
phremove(200,int.TFILE) /*remove phrase just created*/
quit()

Dial Pulse and Speech Recognition Script Instructions

Dial Pulse Recognition (DPR), WholeWord speech recognition, and
FlexWord speech recognition each use a recognizer, a recognition type (or
wordlist for FlexWord recognition), and resources on the SSP circuit card.
The same TAS instructions apply to all of these recognizers. Two important
exceptions are:

• WholeWord recognition is the only one (other than touch tones) that
allows the caller to interrupt the prompt message (barge-in) with the
sr_talkoff instruction.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 90

• Dial Pulse Recognition is the only one that requires training of the system
with the recog_init instruction.

You can use DPR simultaneously with WholeWord recognition or FlexWord
recognition. For each Prompt & Collect, either a WholeWord recognition type
or a FlexWord wordlist must be selected. See Intuity CONVERSANTSystem
Version 7.0 Speech Development, Recognition, and Processing,
585-313-201.

The following sections, WholeWord Speech Recognition Script Instructions
on page 92 and FlexWord Speech Recognition Script Instructions on page
97, discuss TAS script instructions used prior to CONVERSANT Version 7.0.
Those TAS script instructions are supported for backward compatibility, but
should not be used for developing new application scripts.

Use the following TAS script instructions for including DPR, WholeWord
recognition, and FlexWord recognition in new application scripts:

• getinput

This script instruction receives touch-tone, dial pulse, or spoken input
from a caller.

• sr_talkoff

This script instruction enables/disables barge-in during a speech
recognition prompt.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 91

• recog_cntl

This script instruction disables or enables a recognizer.

• recog_init

This script instruction initializes a recognizer. It is used to initiate training
parameters on Dial Pulse Recognition (DPR).

• recog_start

This script instruction queues a recognizer for starting.

• recog_stop

This script instruction removes a recognizer from the queue.

• resource_alloc

This script instruction allocates or frees licensed system resources.

Details for these TAS script instructions, including arguments, return values,
and examples, are included in Appendix B, Summary of TAS Script
Instructions.

If your system includes the optional Intuity Feature Test Script Package (ftst),
you can look at dpr_tst.t and asr_tst.t in the /att/trans/sb file for new code
examples.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 92

WholeWord Speech
Recognition Script
Instructions

The following are instructions used by the WholeWord speech recognition
feature:

• getdig(type, ctype.dst, number, ctype.mode)

The getdig instruction includes options for WholeWord recognition
arguments. getdig receives touch-tone or speech information entered by
a caller.

Note: The instruction getinput replaces getdig. Continued use of
getdig is discouraged.

The first argument, type, specifies whether touch-tone or speech input is
expected from the caller. Type 0 specifies 12-key telephone touch-tone
input. A non-zero value for type specifies speech input. The getdig
instruction requires the recognition type used for a particular grammar.
The choices available for type in this instruction can be found in the file
/att/include/sr_grammar.h. The grammars and their specifying values
are listed in the Intuity CONVERSANT System Version 7.0 Speech
Development, Recognition, and Processing, 585-313-201.

Note: For packages that support connected-digit recognition: For
US English, you may use US_0_9 to recognize any variable-
length string of 1–24 digits. If the string length is known in
advance, however, superior recognition performance can be
obtained by using one of the grammars with a fixed string length.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 93

If the type argument is 0, the number argument specifies the maximum
number of touch-tone digits to be received. The maximum value is 128.
Received touch tones are stored as a null terminated character string in a
buffer specified by the destination argument, dst.

If the type argument is other than 0, the number argument specifies the
maximum string length for speech input. Received speech input is stored
as a null terminated character string in a buffer specified by the
destination argument. The characters are defined by the vocabulary
provided. Possible characters are listed in Intuity CONVERSANT System
Version 7.0 Speech Development, Recognition, and Processing,
585-313-201.

Note: For packages which support connected-digit recognition:
This maximum value of the string length for speech input is 24.

The fourth argument, ctype.mode, indicates to the script whether the
response is touch-tone or voice. If the response is touch-tone, -1 is
stored in ctype.mode. If the response is voice, then the number (non-
negative) of the SSP circuit card that recognizes the voice is stored in
ctype.mode to be used later by a DIP.

When the getdig instruction terminates, a return code is placed in r.0.
Appendix B, Summary of TAS Script Instructions, lists the return codes for
speech input.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 94

• sp_alloc(type.onoff, type.resource)

The sp_alloc script instruction is used to allocate or deallocate speech
recognition on the SSP circuit card.

Note: The instruction resource_alloc replaces sp_alloc. Continued
use of sp_alloc is discouraged.

The sp_alloc instruction may be used by a script to allocate the speech
recognition resource on the SSP circuit card. Normally, this resource is
shared by all scripts running on the system, and allocation is done
automatically only when the script actually uses the resource. If the SSP
resource is not available when an instruction that requires it is executed,
the instruction will fail. By using sp_alloc, the script may test for the
availability of a particular SSP resource. If the resource is available, it will
be allocated to the script until the script terminates or until the script
deallocates the SSP resource using sp_alloc.

sp_alloc may be used to allocate an SSP resource for a period longer
than the script is actually recognizing speech. Avoid overloading the
system’s SSP facilities if many scripts using sp_alloc() are running
simultaneously. Script register 0 (r.0) is set to the following values to
indicate the status of the sp_alloc() execution:

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 95

The type.onoff argument is used to tell sp_alloc() whether to allocate or
deallocate resources. Its two valid values are as follows:

The type.resource argument is used to tell the sp_alloc() which SSP
resource or combination of SSP resources to allocate or deallocate. Each
SSP resource has a unique value. The values for each resource and
examples of how resources can be added are listed in Appendix B,
Summary of TAS Script Instructions.

• sr_talkoff(type.flag)

The sr_talkoff instruction is used to enable or disable speech recognition
during the prompt.

0 Success

-1 Error (sp_alloc already on or off)

-2 System resources not available

1 Allocate the SSP resource

0 Deallocate the SSP resource

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 96

If speech recognition during the prompt (barge-in) is enabled by using
sr_talkoff(1), the getinput instruction begins playing any phrases in its
queue and simultaneously turns on the recognizer. If the recognition
during prompt is disabled by using sr_talkoff(0), first, the getinput plays
any phrases in its queue, and then it turns on the recognizer.

If recognition during prompt is enabled, the call can be received through a
telephony interface circuit card (E1/T1 or tip/ring) that is connected to the
TDM bus with the “tdm” option set. Enabling sr_talkoff requires the use
of the SSP circuit card to play the prompts. This is already set for E1/T1.
However, for tip/ring circuit cards set to “talk,” the system detects a
“recognition during prompt” request in the script and automatically uses
an SSP circuit card to play the prompts. Settings and their results are as
follows:

“talk” set and sr_talkoff “off” = the system plays all prompts with the
Tip/Ring circuit card

“tdm” set or sr_talkoff “on” = the system plays all prompts with the
SSP circuit card

Playing prompts uses resources on the SSP circuit card. Application
developers who find that these SSP resources are strained may want to
consider configuring their tip/ring circuit cards with “talk” and designing
the application to use as few SSP resources as possible.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 97

Script register 0 (r.0) is set to the following values to indicate the status of
sr_talkoff execution:

FlexWord Speech
Recognition Script
Instructions

The following are instructions used by the FlexWord speech recognition
feature:

• getdig(type, ctype.dst, number, ctype.mode)

The getdig instruction includes options for FlexWord recognition
arguments. getdig receives touch-tone or speech information entered by
a caller.

Note: The instruction getinput replaces getdig. Continued use of
getdig is discouraged.

The first argument, type, specifies whether touch-tone or speech input is
expected from the caller. Type 0 specifies 12-key telephone touch-tone
input. A non-zero value for type specifies speech input. The getdig
instruction requires the recognition type used for a particular wordlist. The
choices available for type in this instruction can be found in the
/att/include/sr_grammar.h. The sr_grammar.h file contains a line for
every wordlist installed on your system. If WholeWord recognition is

0 Success

-1 Failure

-2 System resource not available

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 98

installed, this sr_grammar.h file also lists all of the recognition types on
the system. Information in this file maps wordlist names into the symbols
that you need to use with this instruction. Therefore, for a specific
wordlist, look to the fourth field and use this “defined symbol,” which
correlates with the wordlist on the same line.

If the type argument is 0, the number argument specifies the maximum
number of touch-tone digits to be received. The maximum value is 128.
Received touch tones are stored as a null terminated character string in a
buffer specified by the destination argument, dst.

If the type argument is other than 0, the number argument specifies the
maximum string length for speech input. Received speech input is stored
as a null terminated character string in a buffer specified by the
destination argument. The characters are defined by the words in the
wordlist.

The fourth argument, ctype.mode, indicates to the script whether the
response is touch-tone or voice. If the response is touch-tone, -1 is
stored in ctype.mode. If the response is voice, then the number (non-
negative) of the SSP or SP circuit card that recognizes the voice is stored
in ctype.mode to be used later by a DIP.

When the getdig instruction terminates, a return code is placed in r.0.
The return values for touch-tone input and speech input are shown in
Appendix B, Summary of TAS Script Instructions.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 99

• sp_alloc(type.onoff, type.resource [,type.mode])

The sp_alloc instruction is used to allocate or deallocate speech
recognition on the SSP circuit card.

Note: The instruction resource_alloc replaces sp_alloc. Continued
use of sp_alloc is discouraged.

The sp_alloc instruction may be used by a script to allocate the speech
recognition resource on the SSP circuit card. Normally, this resource is
shared by all scripts running on the system, and allocation is done
automatically only when the script actually uses the resource. If the SSP
resource is not available when an instruction that requires it is executed,
the instruction will fail. By using sp_alloc, the script may test for the
availability of a particular SSP resource. If the resource is available, it will
be allocated to the script until the script terminates or until the script
deallocates the SSP resource using sp_alloc.

sp_alloc may be used to allocate an SSP resource for a period longer
than the script is actually recognizing speech. Avoid overloading the
system’s SSP facilities if many scripts using sp_alloc() are running
simultaneously. Script register 0 (r.0) is set to the following values to
indicate the status of the sp_alloc() execution:

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 100

The type.onoff argument is used to tell sp_alloc() whether to allocate or
deallocate resources. Its two valid values are as follows:

The type.resource argument is used to tell the sp_alloc which SSP
resource or combination of SSP resources to allocate or deallocate. Each
SSP resource has a unique value. The values for each resource and
examples of how resource values can be added are listed in Appendix B,
Summary of TAS Script Instructions.

If the type.onoff argument is 1, the optional type.mode argument may be
used with the following values:

~ IRD_IMMEDIATE (default as defined in Defines.h) — Allocate
resources immediately

~ IRD_BLOCKFOREVER (defined in Defines.h) — Wait until resource
becomes available before continuing

~ <n> — Wait <n> hundredths of a second for resource to become
available fore continuing, where n is a positive integer

0 Success

-1 Error (sp_alloc already on or off)

-2 System resources not available

1 Allocate the SSP resource

0 Deallocate the SSP resource

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 101

Text-to-Speech
Script Instructions

The say instruction is used by the Text-to-Speech (TTS) feature to direct the
system to speak ASCII text stored in a buffer. The format of the say
instruction is:

 say(ctype.src)
where ctype.src is the ASCII text string to be spoken. The script may pass
text as a literally quoted string or the contents of a null-terminated field (for
example, previously populated with a call to the dbase instruction). The
maximum length of a literal string is 2048 characters.

Say is similar to the talk instruction used for phrases of coded speech. The
text passed to say is stored in a buffer that holds up to 2048 bytes of text.
This buffer is flushed and the text is played when the buffer is full and another
say instruction is executed or when any wait-causing instruction is executed.

The tflush instruction may be used to flush the text-to-speech buffer and
cause the text to play. The first two arguments to tflush (the must_hear_flag
and the wait_indicator) have the same effect for TTS as for coded speech.
(The third argument to tflush, the remember_flag, is not used for TTS.) That
is, the first argument may be used to disable talkoff and the second may be
used to play speech and to continue the script without waiting for the play to
complete. Normally, TSM waits for a TTS play to complete before going to
the next instruction. Spinning off a TTS play, then executing dbase to get the
next block of text while the first block is playing avoids a delay in play
between the two blocks of text. Scripts may continue executing alternate say,
tflush, and dbase calls in this manner until all the text from a DIP is passed
to say to be played.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 102

The say instruction returns one of following values in script register 0 (r.0):

As with coded speech, any TTS being played stops when the script that
caused it terminates or executes a tstop instruction.

Network Interface Instructions

The network interface instruction tic is described below.

tic

• tic(’C’, ctype.dialstr, type.rings)

• tic(’D’, ctype.dialstr)

• tic(’F’)

• tic(’O’, ctype.dialstr)

• tic(’W’, type.rings)

• tic(’a’)

Table 11. Return Values for the say Instruction

Return Value Return Explanation

0 The instruction completed successfully

-1 The say instruction failed. This happens if the text passed
to say did not fit into one TTS buffer (2048 bytes).

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 103

• tic(’d’, ctype.dialstr)

• tic(’f’)

• tic(’h’)

• tic(’o’, ctype.dialstr)

• tic(’w’, type.rings)

The tic instruction provides the script with control functions for the telephone
interface line (channel) that the script is currently using. The function that the
tic instruction performs depends on the value of its first argument. These
argument values and their corresponding functions are listed below.

The tic instruction uses script registers 0 (r.0) and 1 (r.1) to return a result.
This result may differ according to whether the script is using a Tip/Ring, E1,
T1, or PRI channel. Where such variations exist, they are noted below.

• C — Call a number and wait for the disposition. Dial ctype.dialstr; turn on
speech energy detection and wait for number of rings given in type.rings
for “answer” (speech energy or ringing stopped), or call progress tone
other than ringing, or “no answer.”

This instruction handles differences between telephony types better than
tic(‘O’) , or the combination of tic(‘o’) and tic(‘W’) .

• D — Dial ctype.dialstr; wait for any call progress tone, then resume the
script.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 104

• F — Flash; wait for any call progress tone, then resume the script.

• O — Originate (go off-hook and dial ctype.dialstr); wait for the first call
progress tone (CPT), then resume the script. Note that without Full CCA,
the first CPT could be a Ringback, with no indication of Answer or No
answer disposition.

• W — Turn on speech energy detection and wait for number of rings given
in type.rings for “answer” (speech energy or ringing stopped) or “no
answer.”

• a — Answer the line (go off-hook).

• d — Dial ctype.dialstr, then resume the script.

• f — Flash the hook (transfer to another line), then resume the script.

• h — Hang up the line (go on-hook).

• o — Originate (go off-hook and dial ctype.dialstr), then resume the script.

• w — Wait for the number of rings given in type.rings for “answer” (ringing
stopped) or “no answer”

Note: If a dial tone is expected during a call, it is recommended that you
use options ’D’, ’F’, and ’O’ (or ’C’) instead of ’d’, ’f’, and ’o’. This
prevents the dial tone from being interpreted as a hangup signal.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 105

Sample Script
Using Network
Interface
Instructions

In this network interface instruction example, the script directs the tic to use
the flash hook function to transfer to another line. The script sleeps for 2
seconds. The tic then dials out on the current channel using the phone
number stored in ch.PHONE_NUM. The script sleeps for 3 seconds, then
quits.

DIAL_OUT:
tic(’F’)
jmp(r.0!= ’D’ End) /*No dial tone, error */
sleep(2)
tic(’D’,ch.PHONE_NUM)
sleep(3)
End:
quit()

Feature-Related
Instructions

The tic instruction is also used by optional features available with the Intuity
CONVERSANT system. This includes primary rate interface (PRI), which
can provide ISDN cause values, and Full Call Classification Analysis (CCA),
which can provide special information tones (SITs).

For more information about the tic instruction, see Appendix B, Summary of
TAS Script Instructions.

See the setcca instruction in Appendix B, Summary of TAS Script
Instructions, when using Full CCA.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 106

PRI Script
Instructions

On incoming calls, the ANI, DNIS, redirecting number, and service type are
provided by the optional ISDN PRI feature (when available from the switch).
On outgoing calls, the called number, service type, bearer capability, and
outbound ANI can be specified using the optional ISDN PRI feature.

Note: You can use the ANI and DNIS to specify an application for a
caller by assigning *DNIS_SVC to a channel in the Assign
Channel Service screen. Then assign ranges of ANIs and DNISs
in the Assign Number Service screen. Specify the application in
the Service Name field. See Chapter 3, “Voice System
Administration,” in Intuity CONVERSANT System Version 7.0
Administration, 585-313-501.

See Chapter 3, “Digital Telephony Interfaces,” in Intuity CONVERSANT
System Version 7.0 Communication Development, 585-313-202, for
information on establishing the PRI interface. See Intuity CONVERSANT
System Version 7.0 Administration, 585-313-501, for information on
administering and assigning PRI. If you have the Advanced PRI Feature
Package (available to selected business partners), see the Intuity
CONVERSANT Advanced PRI Developer’s Guide provided with the feature
package for more information about special ISDN PRI signaling needs.

The following are instructions used by the ISDN PRI feature:

• tic

The supported tic instruction options are listed in Table 12 on page 107.
These options are used in the same manner for PRI as for T1 (E&M).

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 107

Some options to the tic instruction are not applicable to the PRI. These
options are listed in Table 13 on page 107.

The PRI implementation of the tic(‘C’) (Call) or the similar tic(‘O’)
(Originate) instruction provides additional return code information beyond
the T1 (E&M) and Tip/Ring interface implementations. r.1 returns the

Table 12. tic Options Supported for PRI

Option Function

a Answer an incoming call

h Disconnect (hangup) a call

o Orginate a call, but do not wait for disposition

C, O Originate a call and wait for answer supervision

d Dial touch-tone digits.

Table 13. tic Options Not Applicable to PRI

Option Function

f or F Switch hook flash

w or W Wait for speech detection

D Dial digits and wait for tones

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 108

ISDN cause value (if available) in the event of an incomplete call. These
cause values are returned by the network and are passed through to the
script. The cause value is also passed in register r.1 upon a disconnect
event. Table 31 on page 535 in Appendix B, "Summary of TAS Script
Instructions", contains a list of ISDN cause values returned in register r.1.

The include (header) file (/att/include/tas_defs.h) provides macro
definitions of these values. This file can be used by your application by
including the following line in your script source file:

#include “tas_defs.h”

• The setattr instruction can be used to request the information provided
from the network before starting the script. If the switch allows you to
select the type of information provided for incoming calls, either calling
party number (CPN) — also called station identification (SID) — or
automatic number identification (ANI) — also called billing number (BN)
— can be requested:

~ SID preferred – Request SID; if not available, request ANI

~ SID only – Request SID only

~ ANI preferred – Request ANI; if not available, request SID

~ ANI only – Request ANI only

Note: The setattr instruction describes the environment in which scripts
run. The setattr directives take effect before the script starts.
Therefore, it is not possible to dynamically alter a script’s

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 109

attributes. For this reason, the setattr instruction should be used
only once in each script. For example, the following script
fragment always requests ANI, regardless of the DNIS.

Begin:

 strcmp (dnis.0,”6145555121”)

 jmp (r.0 == 0, gotdnis)

 setattr (ATTR_ANI)

 gotdnis:

The values in Table 14 on page 109 (defined in tas_defs.h) can be used
with the setattr instruction to specify the type of calling party information
being requested.

For example, to request only the SID be returned in the CPN, use the
following instruction:

 setattr (ATTR_SID_O)

Table 14. tas_defs.h define values

ATTR_ANI ANI only

ATTR_ANI_O ANI only

ATTR_ANI_P ANI preferred

ATTR_SID_O SID only

ATTR_SID_P SID preferred

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 110

The following is an example of a script that uses setattr to request ANI.

#include “tas_defs.h” /* CONVERSANT provided header file */

#define NUMBER_TO_BE_CHECKED 0 /* User space allocation */

/* Specify attribute that causes the PRI to request ANI */
 setattr(ATTR_ANI)

/* Specify the speech file you wish to use */
 tfile(application)

Begin:
 /* Retrieve the ANI number */
 /* ANI is a character string stored in special register

 * ‘IE_ANI’ */
 strcpy (ch.NUMBER_TO_BE_CHECKED, IE.IE_ANI)

 /* Is the call from AREA code 614 ? */
 jmp (ch.NUMBER_TO_BE_CHECKED != ’6’, WrongAreaCode)
 jmp (ch.NUMBER_TO_BE_CHECKED+1 != ’1’, WrongAreaCode)
 jmp (ch.NUMBER_TO_BE_CHECKED+2 != ’4’, WrongAreaCode)

 /* Area Code OK */

 /* Answer call */
 tic(‘a’)

 /* Begin transactions */
 talk(“Welcome ... “)
 ...

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 111

 ...
 quit()

WrongAreaCode:
 /* Wait for caller to Hangup */
 goto WrongAreaCode

If an incoming call has been redirected from the originally-dialed number
to a PRI trunk on the Intuity CONVERSANT system, a redirecting number
is available as an ASCII character string in the script register
IE.IE.REDIRECTING. The redirecting number is the originally-dialed
number.

Figure 7 on page 112 depicts a call placed to “1234” that has been
redirected to “5678.” In this example, the system provides the telephone
numbers shown in Table 15 on page 111 to the script.

Table 15. Telehone Numbers Provided to the Script for
Redirected Numbers

Script Register Number

IE. IE_DNIS "5678"

IE.IE_REDIRECTING "1234"

IE.IE_ANI "1111"

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 112

Figure 7. Retrieving the Redirection Number - Example

If the PRI trunks are provided with multiple incoming services (for
example, MEGACOM800 or MULTIQUEST), the script provides a register
that contains the type of service which delivered the incoming call. The
service type is determined by the network processing the incoming call
and is stored in the IE_SERVICE register as an integer. Service types are
listed in the setparam instruction in Appendix B, Summary of TAS Script
Instructions.

VISSWITCH

Caller
"1111"

Originally-dialed
number - "1234"

Redirected call
to VIS - "5678"

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 113

• setstring (OUTBOUND_ANI, ctype.src)

The setstring instruction allows an application to set a CPN for an
outbound call.

The ctype.dst argument is a character string which represents the CPN.
After setstring is invoked, subsequent outbound calls will use the
ctype.dst argument as the outbound CPN.

For example, the following instructions will place an outbound call to
ch.CALLED as the dialed number and with (614)555-1212 as the calling
party number.

setstring (OUTBOUND_ANI, ”6145551212”)
tic (‘o’,ch.CALLED)

Note: If the setstring command fails, r.0 is set to a negative number.
Note that the setstring command failed if the destination operand
(OUTBOUND_ANI) is incorrect or if the format of the number to
use for outbound ANI is incorrect.

• setparam (type.param, type.value)

The setparam instruction sets a parameter associated with a script. For
example, setparam can be used to change the service type and bearer
capability for outbound PRI calls by setting the SERVICE_TYPE and
BEARER_CAP parameters. Valid parameters and their values are listed
in Appendix B, Summary of TAS Script Instructions.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 114

Miscellaneous Instructions

The following are miscellaneous instructions used in TSM scripts.

• chantype ()

The chantype instruction is used while implementing Converse Data
Return to support the DEFINITY Call Vectoring feature. The instruction
enables scripts to determine the type of channel they are running on.

Table 22 on page 415 in Appendix B, Summary of TAS Script Instructions,
contains a list of values returned in register r.0 from the
/att/include/irDefines.h header file. A negative value is returned if an
error occurs.

For example:

#include “/att/include/irDefines.h”

/* get channel type */
chantype()
load(int.F_chantype, r.0)

/* channel type must be TR or LSE1/LST1 */
jmp(int.F_chantype == IRD_TR, L__chan_OK)
jmp(int.F_chantype == IRD_ASAI, L__chan_OK)
jmp(int.F_chantype == IRD_LST1_DEF, L__chan_OK)
jmp(int.F_chantype == IRD_LST1_GAL, L__chan_OK)
jmp(int.F_chantype == IRD_LST1_ASAI, L__chan_OK)

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 115

• hbridge(type.src,type.src)

The hbridge script instruction directs the current channel to bridge
partially to another channel. This results in the audio coming in on the
specified channel to be heard or dropped by the calling party (current
channel). The specified channel does not hear the calling party. The
current channel does not hear voice responses or other background
audio on the specified channel.

The first type.src argument is a valid channel number. The second
type.src argument is either 1 to add the specified channel or 0 (zero) to
drop the channel. Values for the channel numbers and the add/drop flag
follow the conventions for all type.src arguments (see Script Conventions
on page 26).

If the hbridge instruction is not successful, a negative value is returned to
r.0. The following are conditions under which the hbridge instruction may
fail:

~ A hbridge attempt to a current channel failed.

~ The channel reached its limit for listen time slots (maximum seven per
channel).

~ A system call failure occurred.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 116

• hundsec(type.dst)

The hundsec() instruction loads the integer type.dst with the system time
in hundredths of a second.

Note: Do not use the hundsec instruction in a loop to insert delays in
script execution. Use the sleep or nap instructions instead.

• listenall(type.src, type.src)

The listenall instruction listens to all audio input on a specified channel.
Audio input includes normal voice responses to the network. The
specified channel does not hear any audio from the current channel. This
allows administrators to monitor the channel.

The script with the call to listenall must be kept running until the caller is
finished monitoring the audio input on the other channel. One way to
accomplish this would be to add a call to sleep directly after listenall
instruction. For example:

listenall (45, ADD)
sleep (45)

These instructions keep the monitor script running for 45 seconds after
the script starts. You must determine how long the other channel will be
monitored and use the appropriate sleep value.

The first type.src argument is a valid channel number. The second
type.src argument is either 1 to add the channel or 0 (zero) to drop it.

3 TAS Script Instructions Script Instructions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 117

These arguments must follow the conventions for type.src arguments
discussed earlier in this chapter (see Script Conventions on page 26).

If the listenall script instruction is successful, a positive value is returned
to r.0. If the listenall instruction is not successful, a negative value is
returned to r.0.

The following are reasons the listenall instruction might fail:

~ An attempt to monitor current channel failed.

~ An attempt to monitor more than one channel failed.

~ The channel reached its limit for listen time-slots (maximum seven per
channel).

~ A system call failure occurred.

Note: If the listenall instruction hears a dialtone, the instruction may
disconnect depending on how the script uses the event
instruction. See the event instruction in this chapter or see
Appendix B, Summary of TAS Script Instructions.

• trace(type.src [,type.src])

The trace script instruction works with the trace line command to monitor
the progress of scripts. This capability is useful in debugging and
troubleshooting scripts, either during initial application development or if
problems rise while the application is running. The trace instruction
enables TSM to print messages to the shared memory area for trace

3 TAS Script Instructions Script Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 118

messages. These messages can include the default trace messages for
TSM or a specific channel.

Note: If there are too many traces running simultaneously on a system,
the buffer in which this information is stored may be filled and
some data lost, with no notice of this in the trace output.

The first argument is evaluated as a number and is used as a step
identifier. The optional argument can be used to print a specific data
value of interest. The optional argument may be any integer type, or a
null terminated character string.

In the following example, 25001 and int.F_TEMP are traced.

trace (25001, int.F_TEMP)

When the example trace statement above is run, the statement appears
as step 25001 in the trace and the content of F_TEMP is displayed.

See Intuity CONVERSANT System Version 7.0 Administration,
585-313-501, for additional information on the trace command.

Script Development

The following information details defining header files and user memory,
identifying events, and specifying source files.

3 TAS Script Instructions Script Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 119

Transaction Control Header Files

Many parameters used in a script are defined in header files. The first two are
defined already; the third and fourth files are defined by the application
developer. The user directories and application names shown are only
examples.

1 Defines generic messages to the DIP and their format

/att/msgipc/tsm_dip.h

2 Defines speech codestyle messages to TSM

/att/include/codestyle.h

3 Defines script variables and allocates user memory

/usr/var/applN/trans/application_namedef.h
or
/att/trans/sb/application_name/application_namedef.h

4 Defines the application messages to the DIP and their format

/usr/var/applN/dipN/tsmdipappl.h
or
/att/trans/sb/application_name/application_namedef.h

3 TAS Script Instructions Script Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 120

Defining User Memory

User memory is defined by the mkheader command (see Intuity
CONVERSANT System Version 7.0 Administration, 585-313-501, for more
information). The mkheader command allocates space for local, global, and
database variables used by the script. The program is initiated by entering:

mkheader application_name

This command creates a header file called application_namedef.h.

Identification of Events

Once the information that is to be recorded during a transaction has been
determined, then a number is assigned to each noteworthy event and a label
is entered for that event.

When an event occurs during a transaction, the script can increment the
event or load the appropriate value into it. When the transaction is complete,
the contents of event memory are passed automatically to CDH, which puts
this data in the call data and call summary tables in the database.

Events are recorded in three ways:

• A count event increments an integer into event memory

• A store event loads an integer or string into event memory

• A time event loads the time into event memory

3 TAS Script Instructions Script Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 121

The following are examples for recording information about getinput:

After getting a yes or no reply and storing it in a field called YN, the program
increments event 1, which represents the number of attempts to get a yes or
no reply; saves the integer in event 2; and saves the time of the response in
event 3.

Source File

The script instructions are initially stored as an application_name.t source
file. This file is given as the argument to the tas command to produce a
machine readable application_name.T file. The application_name.T file is
stored in the /vs/trans directory and is used by the TSM process.

For more information on the tas command, see Intuity CONVERSANT
System Version 7.0 Administration, 585-313-501.

getinput(ch.YN, 1) /* Request Yes/No response */

incr(ev.1, 1) /* Record event 1 */

load(ev.2, ch.YN) /* Record event 2 variable name */

load(ev.3, time.0) /* Record event 3 */

3 TAS Script Instructions Wait Conditions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 122

Wait Conditions

The TSM program is responsible for running scripts that are produced with an
editor, Graphical Designer, or Script Builder and compiled with the TAS
program. Once a script is started on a particular channel, TSM continues to
execute instructions until a wait condition occurs. Script execution then is
suspended on that channel until the wait condition is satisfied by an external
event or a timeout occurs.

Wait conditions fall into two general categories.

• Speech-flushing instructions — Script instructions that cause a wait by
flushing any speech that has been queued for playing by the script before
the instructions are executed.

• Wait-causing instructions — Script instructions that cause a wait during
their execution that is characteristic of their function. They make a
request on behalf of the script that must be satisfied by a process external
to TSM.

Note: Some instructions fall into both of the wait condition categories.

3 TAS Script Instructions Wait Conditions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 123

Speech-Flushing Instructions

Some instructions cause the script to wait by forcing any speech phrases or
text that have been queued by the talk, tchar, tnum, or say instructions to
play before the instruction itself is executed. Thus, the actual wait occurs
before the instruction is executed. These instructions are:

dbase()
exec()
execu()
getdig()
getinput()
nwitime()
phremove()
phreserve()
quit()
setalk()
sleep()
sr_talkoff()
subprog
talkresume()
tfile()
tflush()
tic()

3 TAS Script Instructions Wait Conditions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 124

If any of these instructions are executed while there is speech queued for
playing, the speech is played and the script waits for the play to complete
before executing the instruction. Playing speech also causes any touch
tones that have been received by the script and not yet retrieved with
getinput or getdig to be thrown away unless the setttfl instruction has been
used to enable the type_ahead feature.

One exception, where a wait for speech is not caused, is when the tflush
instruction is used with its second argument set to 1. This causes any
queued speech to be played and spun off; the script continues execution
without waiting for the play to complete.

There is no timeout imposed by TSM on a wait for speech to finish playing.
TSM depends on a message from the voice system to tell it when to resume
script execution after the play has stopped.

Wait-Causing Instructions

Some instructions make a request of a process external to TSM and cause
the script to wait until that request is satisfied. In addition to causing a wait for
a request to be satisfied, some of these instructions are also speech-flushing
instructions (see above) and so may cause a wait for speech to finish playing
before they are executed.

3 TAS Script Instructions Wait Conditions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 125

The wait-causing instructions are listed below. See the descriptions of these
instructions earlier in this chapter for more information.

• The dbase instruction sends a message to a DIP and may wait for a
return message. The dbase instruction does not cause a wait if it is used
to send a message to a DIP and not to receive one in return. (In this
case, the number of bytes expected for the return message is set to a
negative integer.) The timeout period for dbase is 45 seconds by default.
Change this timeout period with the nwitime instruction.

• If the getinput or getdig instruction is executed specifying a number of
digits greater than that which has already been entered by the caller, the
script waits for the required number of digits to be entered. Use the
ttdelim instruction to set delineators that allow getinput or getdigto
accept variable length digit strings without waiting for a timeout. Two
timeouts affect the getinput or getdig instruction: an initial timeout and
an interdigit timeout. Both of these timeouts are five seconds by default.
Change the default timeout with the tttime instruction. Interdigit timeout
applies only to touch-tone input and Dial Pulse Recognition.

• The phreserve instruction is used to reserve space in a talkfile for a
phrase. The script waits for a message from the voice system to
complete the request. The timeout period for phreserve is 45 seconds by
default. Change the timeout value with the nwitime instruction.

• The resource_alloc instruction may cause a wait if the optional mode
argument is used to wait for a resource if it is not immediately available.

3 TAS Script Instructions Wait Conditions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 126

• The sleep instruction causes the script to wait for the specified number of
seconds before continuing. The nap instruction causes the script to wait
for the specified number of centiseconds (hundredths of a second).

• The sr_talkoff instruction will wait until the barge-in capability is turned
on or off for speech recognition before returning to the script.

• The talkresume instruction is used to play speech that is remembered for
the channel (that is, played with the third flag of the tflush instruction set
to 1). As with tflush, there is no timeout required for this instruction. The
voice system informs TSM when the playing has completed.

• The tic instruction has several functions that constitute the interface
between the script an the telephone network. Most tic functions cause a
wait condition while the function is being completed. The timeout period
for tic is 45 seconds by default. Change this timeout value with the
nwitime instruction or modify if implicitly by some tic functions (see tic for
more details).

• The tstop instruction is used to stop all speech playing or coding activity
on the channel. Depending on what argument is passed to tstop, the
script may wait for a message indicating that such activity has stopped
before continuing. The timeout period for tstop is 45 seconds by default.
Change this timeout period with the nwitime instruction.

3 TAS Script Instructions Wait Conditions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 127

• The vc instruction is used to do voice coding (recording speech from the
caller). Two timeouts affect the vc instruction: an initial silence timeout
and an interword silence timeout. Both of these timeouts are five seconds
by default. Change this timeout period with the vctime instruction.

Avoiding Common Pitfalls with Wait Conditions

Once TSM is executing the instructions of a script, that execution proceeds
uninterrupted until a wait condition occurs. Normally, at this point, script
execution is suspended until the system function which required the wait is
completed, then the script resumes execution at the point where the wait
occurred.

Note: Scripts that contain more than 400 instructions without a wait
condition are suspended by TSM until either an event is received
on that channel or the TSM event queue is empty. This may
cause the script to execute with noticeable delays under heavy
system load. To avoid this, design your scripts to include wait
conditions (at least one per every 400 instructions).

3 TAS Script Instructions Wait Conditions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 128

Several things can happen during a wait which may effect the script’s
execution after that point. When a script needs to wait, TSM returns to
reading its message queue to process external events that effect the
execution of all currently running scripts. The following is a list of some of the
actions TSM may take:

• TSM may resume execution of a waiting script on another channel where
the conditions of the wait have been satisfied or the wait has timed out.

• Instead of a wait condition being satisfied normally, TSM may receive
another event for the channel, such as a caller disconnect, which will
terminate the script.

• The MTC process may seize equipment being used by the channel
causing the script to be terminated (if the seizure is done unconditionally).

• Touch tones typed by the caller are received by TSM and copied into the
script’s touch-tone buffer during a wait.

• Events that are handled by the event script instruction may cause the
current wait to be interrupted and script execution to be resumed with an
interrupt subroutine (see the event instruction for further details). When
this is done, the script may return to the point of interruption (and resume
the wait) if the interrupt routine has not caused a second wait condition. If
the interrupt routine does cause a wait, the original wait condition will be
disregarded and the script will continue at the next instruction after the
point of interruption when the routine returns (using the rts instruction).

3 TAS Script Instructions Wait Conditions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 129

It is important to remember how timeout values apply to wait conditions. The
nwitime instruction may be used to change the general next wait instruction
timeout (NWIT), which has a default of 45 seconds. This timeout value only
applies to the next background, dbase, phreserve, sr_talkoff, tic, or tstop
instruction wait. It does not affect the timeouts of other wait-causing
instructions that have their own specific timeout values (see Wait-Causing
Instructions on page 124). Nor does it affect the wait for speech to finish
playing, which has no practical timeout. The NWIT is reset to the 45 second
default when the second instruction after nwitime is executed.

Do not to let a wait condition separate a decision point in a script and its
dependent action point if the decision is affected by what may happen in the
system during the wait. An example of this is using the scrinst instruction to
take action based on the number of instances of a particular script running at
a particular time. The scrinst instruction returns the number of instances of a
script at the time it is executed. If a wait condition is allowed between the
scrinst and the point in the script where action is taken based on the result of
scrinst, an unintended consequence may result because the number of
scripts running may have changed during the wait. In this case, use tflush
before scrinst to make sure that any wait for speech playing will not be done
at a critical time and take care not to use any other wait-causing instructions
in the critical interval. This is especially important when using the exec
instruction based on the result of scrinst since exec is a speech-flushing
instruction. (See the description of scrinst earlier in this chapter for an
explanation.)

3 TAS Script Instructions Troubleshooting Scripts

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 130

Troubleshooting Scripts

This section contains information to help script writers make sure their scripts
are working properly. Included are procedures for detecting problems in a
script, possible problems found in scripts, and points to keep in mind when
using specific instructions. The following points are discussed:

• Checking the status of talk instructions

• Erasing arguments in the ttdelim instruction

• Checking for string matching failures

• Losing touch tones

See Intuity CONVERSANT System Version 7.0 Administration, 585-313-501,
for more information on the trace command.

Check the Status of talk Instructions

One or more talk instructions in a script cause a list of phrases to be played.
If a failure occurs in the process of playing one or more phrases, the Intuity
CONVERSANT system software plays as many phrases as possible but
returns an error code of -1 in r.0. When using the tflush instruction, the script
writer can tell the script to check r.0 for the returned status.

3 TAS Script Instructions Troubleshooting Scripts

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 131

When talk instructions are executed, the system queues phrases in a buffer,
but the phrases are not immediately played. Phrases are played when:

• The script executes any wait-causing script instruction (the most common
occurrence)

• The tflush instruction flushes the buffer

In order to check the status of a list of phrases being queued, the script must
examine r.0 immediately after one or more talk instructions have been
executed. By entering the tflush instruction in the script, the status can be
obtained immediately following one or more talk instructions. The tflush
instruction, like other speech-flushing instructions, causes the phrases
queued by the talk instructions to be played. But only tflush retains the
returned status from playing phrases in r.0. The other instructions may
overwrite r.0 with their own return status.

The following is an example of using tflush to examine the returned status of
queued phrases:

talk (“Hello”)
talk (200)
talk (“Enter your ID”)
tflush()
jmp(r.0 < 0,play_fail)
getinput(ch.ID, 4)
--
--
--

3 TAS Script Instructions Troubleshooting Scripts

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 132

play_fail:
quit(3)

In this example, several phrases are queued as the result of the three talk
instructions. The tflush instruction is optional and does not have to be used.
Its function is to allow the script writer to check the status when phrases are
played. When the tflush instruction is completed, r.0 contains 0 if no errors
occurred; otherwise, it contains -1. If no errors occur, the script collects touch
tones by executing the getdig instruction. If there are errors in the play,
control jumps to the label play_fail.

It is recommended that the tflush instruction be used only after several talk
instructions have executed, not after every talk instruction. Each time tflush
is executed, two interprocess messages are sent: TSM sends a message to
VROP which causes the phrases to be played and VROP returns a message
to TSM which contains the status. These processes can delay play of a script
if tflush is used too often.

Note: Take care to avoid program loops that queue up large numbers of
phrases before playing them with tflush or other speech flushing
instruction. TSM uses dynamic memory allocation to store the
phrase queue. Allowing the queue to become too large before
flushing it could cause the TSM process to become too large,
negatively affecting system performance (60 phrases is a
reasonable queue limit).

3 TAS Script Instructions Troubleshooting Scripts

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 133

Erase Arguments in the ttdelim Instruction

The following points must be kept in mind when using erase-character and/or
erase-entry arguments in the ttdelim instruction.

1 If a getinput or getdig request asks for x touch tones and x are entered,
neither this string nor the last character of this string can be erased using
an erase-entry or erase-character, respectively. Once an input request
for a specified number of touch tones has been satisfied, it is too late to
perform an erase function. Hence erasing a string or the last character
entered must be done before the last touch tone satisfying the input
request has been entered.

For example, if a 5-digit string is requested, and a caller has entered
8275, it is possible at this point to erase the 5 in the string 8275.
However, once another digit is entered, the result is immediately
processed by the script. One exception arises and is explained as
number 2 below.

2 If two touch tones are used as an erase character and/or erase-entry
argument in the ttdelim instruction, the first touch tone of the argument
should not be one that can be part of a normal input string.

For example, suppose a script will accept a 5-digit ID as input. Normal
input in this case consists of any 5-digit touch-tone string comprised
solely of digits. Suppose that the following ttdelim instruction appears in
the script:

3 TAS Script Instructions Troubleshooting Scripts

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 134

ttdelim (’#’,’6#’,-1,-1)

Here, # is used to erase the last character and 6# is used to erase the last
string entered.

Whenever the first character of a two-character erase argument is
entered, the script always waits for another touch tone to be entered to
determine if it is the second character of the two-character erase
argument.

A problem arises with the preceding use of the ttdelim instruction.
Assume that a caller enters 28136 in response to a request for five touch
tones. The script will not immediately process these five touch tones.
The system waits for a # to be entered because the 6 is the first of a
2-character erase argument. If the caller does not enter any more touch
tones, the request for five touch tones times out. In this example, it is
impossible to enter IDs that end with the digit 6.

To avoid this problem, use either single character erase arguments or, if
2-character erase arguments must be used, make sure that the first
character cannot be part of a normal input string. The problem in this
example can be solved by simply reversing the 6 and #. The new ttdelim
instruction would be:

ttdelim (’#’,’#6’,-1,-1)

In this case, 28136 would be immediately processed by the script.

3 TAS Script Instructions Troubleshooting Scripts

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 135

Speech String Matching Failures

Occasional speech string matching failures can occur when a substituted or
abbreviated string in a talk instruction is searched in a listfile when tas
assembles a script. If the string fails to match, add one or more words to the
string in the talk instruction until the string matches.

Although the string matching algorithm has this small drawback, it is
user-friendly in that it requires a minimum amount of effort on the part of the
script writer to identify phrases in talk instructions. Rather than entire
phrases in talk instructions, only a minimal substring that uniquely identifies
the phrase in talk instructions is required.

Loss of Touch Tones

Script instructions can be grouped in two categories:

• Those that cause the touch-tone and phrase buffers to be flushed as a
preliminary step before the instruction is executed. These instructions are
the speech-flushing instructions listed earlier.

• Those that do not flush the touch-tone and phrase buffers

You also should be aware of setttfl and ttclear instructions that help control
touch-tone loss.

The decision to have certain instructions (those listed in the first category)
flush the touch-tone and phrase buffers is based on the need to keep the

3 TAS Script Instructions Troubleshooting Scripts

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 136

caller and script in sync. Without flushing these buffers at certain points in
the script (for example, after the speech-flushing instructions are executed),
the caller and script may get so far out of sync that the caller gets confused
and must hangup and call again.

To illustrate this situation, consider the following example where touch tones
are not flushed periodically. A script prompts a caller to enter the following:

~ A 4-digit id

~ A 2-digit code to select from services described by the script

~ A 1-digit code for additional information on a specific service

In response, the caller enters the following touch-tone sequence:

8225
31
6

These touch-tone sequences identify customer 8225 requesting service 31
and entering 6 to obtain various prices of this service. When callers become
familiar with a script, they often enter touch tones before the script prompts
for them. If all touch tones are retained and not flushed periodically, it is
possible for the script to understand all the touch tones entered ahead of the
script. However, when callers enter incorrect touch-tone sequences, it is
difficult for both the script and the caller to take immediate corrective action.
For example, suppose a caller enters the following touch-tone sequences
before the script asks for them:

3 TAS Script Instructions Troubleshooting Scripts

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 137

8225
37
6
14
2
88
5

If the entry 37 identifies a valid service but the caller meant to enter 31, then it
is difficult for the script to recover from an error. If all touch tones are
retained, they are processed and the caller cannot stop the processing.
Moreover, the caller may not realize there is an error and be confused by
what the script plays back. The script and the caller become further out of
sync.

Situations like the one just described can be prevented by clearing the touch
tone buffer periodically. Experience has shown that this is generally a more
user-friendly approach. Although touch tones are occasionally lost if users
enter them too far ahead, the only penalty is that users must re-enter a single
response. However, the main advantage of periodically flushing the
touch-tone buffer is that it makes writing scripts simpler. If all touch tones are
retained, the variety of error-recovery situations that occur is large and
nontrivial if it must be done in the script. If the touch-tone buffers are flushed,
the script writer is relieved of the addressing error-recovery situations in the
script. The setttfl instruction can be used to prevent touch tones from being
flushed. See the description of the setttfl instruction earlier in this chapter.

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 138

4 Data Interface Processes

Overview

This chapter describes the standard interface between a data interface
process (DIP) and the transaction state machine (TSM) scripts and the
logger/alerter. It also details the pieces involved in writing DIPs, including the
C-library functions and transaction assembler script (TAS) instructions.

This chapter assumes the following:

• The C-development software is installed.

• You are familiar with C-language programming in a UnixWare operating
system environment.

Note: The information provided in this chapter is provided for backward
compatibility and support of DIPs created in releases prior to
Intuity CONVERSANT System V5.0. All new DIPs should be
written in terms of the IRAPI. See Chapter 5, IRAPI, for additional
information.

4 Data Interface Processes Introduction to the Data Interface Process

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 139

Introduction to the Data Interface Process

In any application, TSM scripts control how a call is handled. Decisions and
actions such as answering the phone or collecting touch-tone digits are
specified using Script Builder or the TAS assembly-like language. However,
TSM scripts alone cannot handle a significant number of applications that
need to access external data from files or a database or perform complex
numerical calculations. A DIP provides these capabilities. In fact, DIPs
provide all the resources of C-language programs and the UnixWare
operating system to scripts.

A process is a program that is currently running in the system. TSM, logger,
alerter, and DIPs are examples of processes. Figure 8 on page 140 shows
typical interaction between a DIP and other processes in the voice system
software.

4 Data Interface Processes Introduction to the Data Interface Process

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 140

Figure 8. Data Interface Process (DIP) Architecture

TSM
script

TSM
script

TSM
script

TSM

Logger

Alerter

DIP

DIPAdditional
resources

Additional
resources

4 Data Interface Processes Introduction to the Data Interface Process

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 141

Generally, a DIP interacts with the following processes:

• TSM scripts

• Additional resources (for example, a database or host computer)

• The logger

DIPs are usually message-driven, meaning they wait until a message arrives
before taking any action. Once a request is received from a TSM script, for
example, the DIP processes the message and returns the results to the
corresponding TSM script.

The overlapping circles in Figure 8 on page 140 indicate that a DIP can have
multiple copies of itself running and reading from the same message queue
to allow for faster servicing of requests.

Message Queues

DIPs talk to TSM scripts through UnixWare system interprocess
communication (IPC) messages queues. IPC message queues are similar to
mailboxes behind the registration desk in a hotel.

The voice system acts as the hotel, the guests correspond to the DIPs, and
the attendant at the desk is TSM. The DIPs have their own separate
mailboxes (messages queues) for receiving messages sent by other guests
or outsiders.

4 Data Interface Processes Introduction to the Data Interface Process

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 142

Data is passed between DIPs and TSM scripts through these mailboxes.
DIPs leave messages to TSM scripts in TSM’s predefined mailbox. TSM then
reads, sorts, and distributes these messages to the appropriate script, just as
the attendant distributes messages left for guests at the front desk of the
hotel.

The voice system has a total number of 95 message queues (mailboxes)
available, numbered from 1 through 95. These numbers, known as message
queue keys (Qkeys), serve to uniquely identify individual message queues.

The voice system Qkeys are divided into the following groups:

• Voice system processes: 1–19

• Hardcoded DIPs: 20–54

• Other processes: 55–63

• Dynamic processes (including DIPs): 64–95

Hardcoded and dynamic DIPs are discussed in the Types of DIPs on page
143 section of this chapter.

For additional information about UnixWare System Message Queues and
UnixWare programming features, see the SCO UnixWare documentation.

4 Data Interface Processes Introduction to the Data Interface Process

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 143

Types of DIPs

There are two types of DIPs: hardcoded and dynamic. Both may exist on
your system. The only difference between these two types of DIPs is the
manner in which they are assigned their message queue number.

A hardcoded DIP has a pre-defined message queue, or DIP number, in its
C-code. Using the hotel example, it is similar to selecting a mailbox without
first checking at the registration desk to make sure no other guest is using
that mailbox. DIPs reading from the same message queue will interfere with
each other.

Dynamic DIPs (DynaDIPs) avoid this type of conflict by asking the voice
system for an available message queue at run-time. That is, DynaDIPs do
not know what message queue they will have until each time they are run on
the voice system. Using the hotel example, it is similar to asking for an
available mailbox for a guest, rather than asking for a mailbox number.

Each DynaDIP gives its DIP name and instance number to the system and a
unique, unused Qkey is returned. DIPs using the same name receive the
same Qkey from which to read, allowing for DIPs that are instances of each
other. In this case, the DIPs intentionally read from the same Qkey because
they are instances of one another. However, you should avoid having two
unrelated DIPs use the same name and then read from the same Qkey.
Using unique names instead of numbers (Qkeys 1–95) reduces the chances
of clashes between two unrelated DIPs.

4 Data Interface Processes Introduction to the Data Interface Process

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 144

Note: It is strongly recommended that you use DynaDIPs instead of
hardcoded DIPs.

Message queue assignments remain in effect and are fixed as long as the
voice system is running, despite DynaDIPs dying or respawning. Restarting
the voice system removes these assignments, as the name “Dynamic” DIPs
stresses the fact that their message queues are dynamically assigned and
likely will change across restarts of the voice system.

The voice system provides 150 slots for dynamic processes. About 15 of
them are used by CONVERSANT processes such as iCk and AD. However,
the following caveats apply:

1 The type of work DIPs and other processes do affect the performance of
the system.

2 The voice system tunes the UnixWare system for a maximum of 75
processes running at one time. You might need to increase this tunable
parameter to fit all your DIPs and all the other processes in your specific
system.

4 Data Interface Processes Introduction to the Data Interface Process

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 145

Bulletin Board

The bulletin board (BB) is an area of memory used for registering voice
system processes and DIPs. Expanding again on the analogy of the voice
system as a hotel for DIPs and other processes, the BB is like the registration
book of this hotel. Before interfacing with any other process, DIPs start and
register themselves by DIP name, instance, number, and assigned Qkey in
the BB. Each DIP instance is assigned one of the fixed number of available
slots. There are 150 slots for dynamic processes. Approximately 130 of
these slots are available for custom processes, after allocating about 20 to be
used for CONVERSANT processes and optional packages.Slots cannot be
shared even if the DIPs share the same message queue.

DynaDIPs must register in the BB, as they can only receive a dynamically
assigned message queue after checking-in at the front desk.

When the voice system starts, there is a typical influx of DIPs trying to
register themselves at the same time. Registration is done in an orderly
first-come first-served basis, as in a well-run hotel.

4 Data Interface Processes Introduction to the Data Interface Process

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 146

Besides getting an assigned, unused Qkey, there are two other advantages
to posting a process in the BB:

• A process is protected from having duplicate copies of itself running. That
is, only one process is allowed to run with a specified name and instance.

• Based on the rules supplied in the /vs/etc/iCk.rules file, the integrity
checking (iCk) process checks all processes specified by the rules file to
determine if they are stuck or not. Being stuck means that they have
started processing a message but have not completed the process in the
period of time specified by the rules file. If a process is stuck, iCk
responds in one of three ways:

~ Reports the process to the logging system

~ Reports the process and kills it

~ Reports the process and then executes a specified command to
correct the issue

BB Slots It is possible that, in time, the BB may be filled with posted processes,
preventing your process from being posted. Use the bbs command to
display the contents of the BB and to determine if it is full. Remember that
slots 80–111 are for DynaDIPs. If the BB slots are full, stop and restart the
system. This usually frees some slots so that you can post your process.
See the Intuity CONVERSANT System Version 7.0 Administration, 585-313-
501, for additional information on the bbs command.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 147

Writing the DIP

A DIP must be able to send and receive messages to and from TSM. A DIP
may send any errors or other information to the logger. DynaDIPs send
and/or receive messages using the same method, format, and library
functions as hardcoded DIPs. Messages are sent to and received from the
appropriate Qkey by specifying the corresponding Qkey. The Qkey must be
known before any message can be sent or received.

Designing a DIP includes the following steps:

1 Define the data to be passed between the DIP and the TSM script

2 Initialize the DIP to the system

3 Send and receive messages

4 Implement the application-specific processing

5 Define and add logger errors (optional but recommended)

6 Add error reporting (optional but recommended)

7 Add trace messages (optional but recommended)

8 Compile and execute the DIP.

The examples provided here are used in the template for writing a DynaDIP.
See the Sample DIP on page 397 in Appendix A, Application Example.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 148

Step 1: Define Data to be Passed Between the DIP and the TSM Script

Before writing the actual DIP, you must first define the data that is to be
passed between the DIP and the TSM script. First, the data to be sent is
packaged or formatted as a message just like a letter is enclosed in an
envelope. Once sent, the recipient gets the data by unpackaging the
message, or opening the envelope.

Message Format Messages are defined generally in two parts: the header and the
application-specific data. Both of these parts are specified in C-language
structure. The header contains information about the addressee or sender,
the voice channel number associated with the message, and the message id,
as shown in Figure 9 on page 149.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 149

Figure 9. Voice System Message Components

application-specific

header struct mbhdr

data

message type

channel

sender

message ID

sequence

channel

destination

source type

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 150

Header Components

In the message header file (/att/include/mesg.h), the voice system defines
the header structure of IPC messages for DIPs and voice system processes.
Figure 10 on page 150 displays the header structure for these IPC
messages.

Figure 10. Message Header Structure

struct mbhdr {
long mtype; /* Message type */
short irType; /* Source type for message */
ir_key_t irWhoto; * Destination queue or channel owner */
ong irChan; /* Channel number */
long mchan; /* Channel number */
short morig; /* Sender’s Qkey */
hort mcont; /* Message id */
unsigned short mseqno; /* Message sequence number */
};

Note: As you read the following field descriptions, see the Sample DIP
on page 397 provided in Appendix A, Application Example. The
fields in the header structure are as follows:

• The mtype field allows more control over the destination of messages.
This field is used only when sending messages from one DIP to another.

Note: The mtype field is not often used, but must be a positive non-zero
number. Set this field to 1 (one) if you do not plan to use it.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 151

• The irType field indicates the source type for message. This value is set
by the function used to send the message. This field can be ignored if the
DIP is written not using IRAPI.

• The irWhoTo field specifies the Qkey for the destination queue or allows
the IRAPI to specify that the message be sent to the channel owner. This
field can be ignored if the DIP is written not using IRAPI.

• The irChan field specifies the channel number. This must be a valid
channel number when irWhoTo == IRAPI; otherwise it should be set to
IRD_INVALID. This field can be ignored if the DIP is written not using
IRAPI.

• The mchan field refers to the channel number that determines which TSM
script is to receive the message. Messages sent from a DIP to TSM are
routed to the TSM script running on the specified channel. This field
originally is set by TSM (discussed later in this section) and must be
returned to TSM.

• The morig field specifies the Qkey of the sending or originating process.
A DIP’s Qkey is returned by VSstartup for DynaDIPs or irRegister for
IRAPI processes, or is defined for a hardcoded DIP from the list in
mesg.h. This field must be used for returning a message to the sending
process.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 152

• The mcont field (also referred to as the message id) specifies what type of
data is contained in the message from TSM to the DIP, which allows the
handling of messages with data of all shapes, sizes, and meanings.
Message ids are usually defined in the DIP .h file (<dip_name>.h), and
can be used in the TAS dbase instruction. Without this message id, the
DIP is unaware of the kind of data received. It is important to use this field
if a DIP can process more than one type of data input.

For an application to identify each different message to be sent or
received, select a unique positive number. In the mesgrcv on page 576
example in Appendix C, C-Library Functions, two different messages are
defined. One is CALLER_INFO that is set to 6910 and the other is
ORDER_AMOUNT that is set to 6930.

• The mseqno field allows more control over the sequencing of messages.
This field is not used often.

Data Components

The application-specific data part of the message follows the header. The
application is free to shape and size the data in the way it chooses within
system-imposed limits. For every different type of data received, there may
be a corresponding structure and unique message id. A complete set of
messages to be received can be represented in C-language by a union of
message structures as shown in this example from a stock application
(Figure 11 on page 153).

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 153

Figure 11. Message Structure Union Example

/* Define all message structures that can be received. */
struct stockInfo {

struct mbhdr hd;
int stockId;

};

struct callerInfo {
struct mbhdr hd;
charcallerName [30];
int callerId;

};

/* Define the union of all possible message structures that can
be received.*/
union rcvMsg {

struct ms_univ u;/* standard message */
struct stockInfo stock;
struct callerInfo caller;

};

Figure 11 on page 153 shows the union of received message (rcvMsg).
Note that this message structure is as large as the largest message expected
in the application, thus it can be used to hold any message read. Similarly,
the set of messages to be sent can be defined in another union.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 154

The union example contains the message structure ms_univ, defined in
mesg.h, that consists of four long integers as shown in Figure 12.

Figure 12. Standard Message Structure

/* universal structure for passing a message */
struct ms_univ {

struct mbhdr hd;
long arg[4];

};

At this point, you should have defined the data to be passed between the DIP
and the TSM script. Proceed to Step 2: Initialize the DIP to the System on
page 154 to add the C-code that initializes your DIP to the voice system.

Step 2: Initialize the DIP to the System

When starting up, a DIP should do the following:

1 Identify itself to the voice system by posting itself in the BB

2 Set up the tracing facility

3 Get its assigned message queue, if it is a DynaDIP

Two C-library functions (VSstartup and startup) are available to perform the
above activities. These two functions are identical, but VSstartup is used for
DynaDIPs and startup for hardcoded DIPs.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 155

DynaDIPs The following functions are used to initialize DynaDIPs.

VSstartup

VSstartup is called once to post a process, like a DIP, to the BB. It also sets
up the trace facility. VSstartup takes the DIP name, its instance, and a DIP
flag. DIP flag can take one of two values, constants DIP_PROC or
NONDIP_PROC. Setting the flag to the constant DIP_PROC allows the DIP
to send and receive messages to and from TSM scripts. If the flag is set to
the constant NONDIP_PROC, messages sent by the DIP to TSM scripts are
ignored by TSM. An assigned IPC message Qkey is returned if successful as
in Figure 13 on page 155. A negative value is returned if an error occurs.

Figure 13. VSstartup Input and Output

The DIP name should be a unique printable name of up to 15 characters.

Note: Any application dependent initialization, such as opening files,
should be included.

VSstartup
Qkey

DIP Name

instance

DIP flag

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 156

Figure 14 displays the VSstartup synopsis in C-code for the dynamic DIP.

Figure 14. VSstartup Synopsis

#include <sys/types.h>
#include "VS.h"

key_t VSstartup(dipName,instance,flag)
char *dipName;/* unique name associated with process */
short instance;/* process instance */
long flag;/* Will DIP talk to TSM scripts? */

Note: Normally, a system that has a significant number of channels will
take time to reach the inserv state for all channels due to the
diagnostics that are run on the channels at startup. If this is the
case with your system and the DIP depends on all channels being
in service, you may consider delaying the initialization of the DIP
by adding a sleep instruction prior to VSstartup or other
initialization processes.

For additional information, see VSstartup on page 590 in Appendix C,
C-Library Functions.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 157

VStoqkey and VStoname

After posting themselves in the BB using VSstartup, DynaDIPs must retrieve
the Qkeys of all other user-defined DIPs to which they send or receive
messages, as shown in VStoqkey on page 594 in Appendix C, C-Library
Functions. The function VStoqkey converts DIP names to their assigned
Qkeys and the function VStoname converts Qkeys to DIP names, as shown
in Figure 15 and Figure 16 on page 157.

Figure 15. VStoqkey Input and Output

Figure 16. VStoname Input and Output

Figure 17 and Figure 18 on page 158 display the VStoqkey and VStoname
synopsis in C-code for the dynamic DIP.

VStoqkey
QkeyDIP name

VStoname
Qkey DIP name

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 158

Figure 17. VStoqkey Synopsis

#include <sys/types.h>
#include "VS.h"

key_t VStoqkey(dipName)
char*dipName;/* unique name associated with process */

Figure 18. VStoname Synopsis

#include <sys/types.h>
#include "VS.h"

char *VStoname(Qkey)
key_tQkey;/* message queue key */

For additional information, see VStoqkey on page 594 and VStoname on
page 593 in Appendix C, C-Library Functions.

VSerror

VSstartup and VStoqkey may return zero or a negative value when an error
occurs. At this point, VSerror can be called to retrieve a text description of
the error. VSerror is passed the error value and returns a character string
describing the error so that a DIP can log or display the error. Figure 19 on
page 159 displays the VSerror synopsis written in C-code for the DIP.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 159

Figure 19. VSerror Synopsis

#include <sys/types.h>
#include "VS.h"

char *VSerror (errid)
int errid;/* negative error value */

For additional information, see VSerror on page 589 in Appendix C,
C-Library Functions.

Hardcoded DIPs startup

The startup function is called once to post a hardcoded DIP to the BB. As
shown in Figure 20 on page 159, startup takes the Qkey and slot_offset as
arguments.

Figure 20. startup Synopsis

#include "spp.h"

int startup (qkey,slot_offset)
int qkey; /* Message qkey of calling process */
int slot_offset; /* used to get slot for posting */

In startup, the DIP tells the voice system what Qkey the DIP will be using.
Hardcoded DIP Qkeys range from DIP0 to DIP34 and, using one of these
Qkeys, makes the DIP a message-sending DIP to TSM.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 160

The slot_offset argument is used by startup to post the DIP in a specific slot
in the BB. The slot_offset argument is the responsibility of the DIP writer, as
it must be known what slots are available for posting hardcoded DIPs. With
the increased use of hardcoded DIPs by the voice system, the chance of
clashing with other DIPs is possible.

Note: Be aware that other applications may utilize the same hardcoded
DIPs causing a clash of resources.

A list of current hardcoded DIPs that the voice system uses is included at the
end of this chapter.

Startup computes the slot to post the DIP from the slot_offset argument in the
following manner:

slot = slot_offset + DIPSTART

DIPSTART is defined in the file shmemtab.h as 32. Slots reserved for
hardcoded DIPs in the range 32–66, so that the slot_offset given should
range from 0–34 (the range of DIP numbers). The voice system DIPs use the
following convention to compute their corresponding slot_offset:

slot_offset = Qkey - DIP0 (where DIP0 is defined as 20 in mesg.h)

For additional information, see startup on page 586 in Appendix C,
C-Library Functions.

By this point, your DIP should be posted in the BB, and, in the case of a
DynaDIP, you should also know the assigned message queue key.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 161

Step 3: Send and Receive Messages
The following sections describe how to send and receive data between DIPs
and other processes.

mesgsnd Once the data is packaged as a message, it can be sent using the C-library
function mesgsnd. As shown in Figure 21, mesgsnd takes a pointer to the
message msgp of size msgsz bytes and sends it to the message queue
identified by the Qkey mdest.

Figure 21. mesgsnd Synopsis

#include <sys/types.h>
#include <sys/ipc.h> |
#include <sys/msg.h>
#include "mesg.h"
#include "spp.h"

int mesgsnd(mdest,msgp,msgsz,msgflag)
int mdest;/* Message Qkey to send to */
union msgunion *msgp;/* message to send */
int msgsz;/* size of message */
int msgflag;/* flag for controlling send */

The mdest argument is set to TSM (defined in mesg.h) when the DIP wants
to send a message to a script running on a channel. The msgflag argument
is passed directly to the UnixWare system call msgsnd, (see the SCO
UnixWare documentation) and is used to determine the actions to take in
case of an error. This flag is usually set to zero.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 162

The mesgsnd function returns a zero upon successful completion.
Otherwise, a negative value is returned. For additional information, see
mesgsnd on page 583, in Appendix C, C-Library Functions.

The mesgsnd function creates the message queue if necessary.

mesgrcv The mesgrcv function reads the message from the message queue specified
by Qkey (morig) into a buffer pointed to by msgp of size msgsz bytes as
shown in Figure 22. The mesgrcv function creates the message queue if
necessary.

Figure 22. mesgrcv Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include "mesg.h"
#include "spp.h"

int mesgrcv (morig,msgp,msgsz,msgtyp,msgflg,msgrtime)
int morig;
char *msgp;/* message buffer */
int msgtyp;/* type of message to read */
int msgsz;/* size of message buffer */

int msgflag;/* control flag */
long *msgrtime;/* message receive time */

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 163

Since the size of the message varies and is unknown before reading, the
message must be read into a buffer that is large enough to accommodate the
largest message to be received by the DIP. This assures that all known
messages are received properly without being truncated or discarded
altogether.

The mesgrcv function also allows a DIP to read messages of a particular
type (msgtyp). The type of message is defined in the field mtype in the
header mbhdr. To read the first message on the queue regardless of its
mtype, invoke mesgrcv with the msgtyp argument set to 0 (zero).

The mesgrcv function can be used in two places in a DIP. At initialization, it
can be used to clear the message queue. Later, it can be used to read
requests as they are received. See Appendix A, Application Example for an
example.

The msgflag field represents a set of flags that control how mesgrcv reads
the messages. By default, mesgrcv waits indefinitely for a message of a
specified type to arrive if none are presently on the queue. Many DIPs and
voice system processes prefer this because they are message-driven.
However, the msgflag field allows you specify that you do not want mesgrcv
to wait for a message to arrive. Currently, the flags are:

• IPC_NOWAIT — If on, mesgrcv returns immediately even if no message
has arrived. If off (not specified, or 0), mesgrcv sleeps until a message
arrives.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 164

• MSG_NOERROR — If on, mesgrcv truncates the received message to
msgsz bytes if necessary.

• IPC_GTIME — If on, mesgrcv returns the UnixWare time (in seconds)
when the message was read. The msgrtime field must point to a long if
IPC_GTIME is specified; otherwise, set it to NULL.

The msgflag field is formed by bit applying the Boolean “OR” operation
(where the operator is |) to turn on all flags. For example, to not wait for a
message and obtain the time the message was read (if any are available),
pass the following:

IPC_GTIME IPC_NOWAIT.

IPC_GTIME and MSG_NOERROR is defined in mesg.h and IPC_NOWAIT
is defined in ipc.h. If no flags are to be turned on, set msgflag to zero (0).

The mesgrcv function returns the number of bytes read upon successful
completion. Otherwise, a negative value is returned. For additional
information, see mesgrcv on page 576 in Appendix C, C-Library Functions.
For additional information on the UnixWare system call msgrcv, see the
SCO UnixWare documentation.

Talking to TSM
Scripts

Usually, a TSM script initiates the interaction by sending a message to the
DIP, which then responds with the information requested. Messages sent by
TSM scripts have TSM as the sender and the channel number on which the
TSM script is running.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 165

Note: The channel number (mchan) must be saved by the DIP for
responding to the appropriate TSM script later.

A DIP reads the message using mesgrcv and decides what action to take
based on the message id (mcont). The message id is set by the TSM script
through the second argument to the dbase instruction. Typically, the DIP
contains a switch statement on the message id with specific cases for all
known message ids, as shown in Sample DIP on page 397 in Application
Example on page 386.

DIP Interrupt

Sometimes a DIP initiates the interaction between itself and a TSM script.
This is done by sending the DIP interrupt message id defined in tsm_dip.h,
which interrupts the TSM script instruction currently executing. See Flow
Control Instructions on page 68 in Chapter 3, TAS Script Instructions for
additional information.

TSM Scripts Talking
to DIPs

TSM scripts send and receive messages to and from DIPs through TSM.
TSM packages and unpackages the message for TSM scripts. That is, TSM
scripts only work with the data part of the message while TSM takes care of
either adding or removing the header part, depending on whether the
message is sent or received by the script. When sending a message, TSM
sends the data from the specified script memory area, and when receiving
message, TSM places the data received from a DIP into the specified script
memory area.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 166

A TSM script is responsible for:

• Allocating script user memory for holding the largest data being sent or
received. Typically, two separate buffers are allocated: one for receiving
and the other for sending.

• Inserting the appropriate data into the buffer before sending it to a DIP

• Extracting and accessing the data from the buffer after receiving the data
from a DIP

The four functions, dbase, dipterm, dipname, and dipnum, are involved
with interaction with DIPs. For additional information on these instructions,
see Appendix B, Summary of TAS Script Instructions.

Note: A Script Builder external function can be written to send and/or
receive messages from DIPs. See Chapter 11, “Using Advanced
Features,” of Intuity CONVERSANT System Version 7.0
Application Development with Script Builder, 585-313-206, for tips
on writing external functions.

• dbase(type.dip,mcont_field,ctype.dst,mbyte,type.src,nbyte)

Both the sending and receiving of data is done through the dbase
instruction. The dbase instruction first sends the data, then waits for a
response from the specified DIP. Responses or messages from DIPs
other than the specified DIP are thrown away by TSM. Note that the data
received from the DIP, ctype.dst, is specified before the data sent to the
DIP, type.src.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 167

The dbase instruction, when used in the case of DynaDIPs, allows the
DIP argument to be the DIP name as well as the DIP number (see
dipnum). The DIP name is specified using the TSM script language
syntax for character strings.

• dipterm(type.dip[,flag])

dipterm instructs TSM to send a message to the specified DIP when the
TSM script terminates. As with the dbase instruction, dipterm allows the
DIP argument to be the DIP name as well as the DIP number. The
dipterm instruction is normally used to perform necessary cleanup after a
script terminates.

The dipterm message is defined as the C-structure struct ms_univ (see
mesg.h). Figure 23 and Figure 24 show the fields of the message and
their values as set by TSM.

Figure 23. dipterm Synopsis

/* message structure for dipterm message */
struct ms_univ {
struct mbhdrhd;
longarg[4];
};

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 168

Figure 24. dipterm Message Structure

struct
ms_univ

struct
mbhdr

message type = 1

channel = channel script
is running on

sender = TSM
(defined in mesg.h)

message id = SCRIPTTERM
(defined in tsm_dip.h)

sequence = arbitrary value

arg[0] = termination code
(defined in tsm_dip.h)

arg[1] = exit code
from quit () or exec()

arg[2] = not set

arg[3] = not set

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 169

The arg[0], as shown in Figure 24 on page 168, displays why the script
terminated. As defined in tsm_dip.h, there are several causes for a
script to terminate.

NORMALTERM A quit instruction in the script was executed.

DISCONTERM The call was disconnected.

SCRFAILTERM An error occurred in the script code.

MTCTERM The MTC process has seized the channel on
which the script is running.

EXECTERM The script exec’ed another script.

arg[1] is set to the value specified in the quit or exec instructions.

• dipname(ctype.dst,type.src)

The dipname function takes a DIP number and converts it to the
corresponding DIP name.

The returned DIP name character string is stored in the specified
destination address. The destination area should be 16 bytes: 15
characters for the DIP name plus 1 character for the null termination
symbol.

dipname is primarily for converting the DIP number returned when a DIP
interrupt occurs. This allows scripts working at the DIP-name level to
continue by converting the DIP number of the DIP that interrupted them.

dipname returns a negative value if an error occurs during translation.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 170

• dipnum(type.dst,ctype.src)

dipnum converts a DIP name to its corresponding DIP number.

dipnum returns a negative value if an error occurs during translation.

At this point, you have completed the necessary steps to send and receive
messages to the DIP from a TSM script.

Step 4: Implement the Application-Specific Processing

Write the code necessary for the DIP to process the required function and
return the desired result. This is the main reason for using a DIP.

Step 5: Define and Add Logger Errors

Define and add logger errors that the DIP will send to the system. This is an
optional step, but is recommended. Add as many logger messages as
necessary to identify individual problems. For each message, include as
much information as possible about variables. These would include return
values for important functions and the errno value. For more information, see
Chapter 6, Message Logger.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 171

Step 6: Add Error Reporting

Add error reporting to notify the logger of errors. This is an optional step, but
is recommended. For more information, see Chapter 6, Message Logger.

Step 7: Add Trace Messages
DIPs can be traced by embedding debug information in the DIP and
displaying it via the trace command and the db_pr command. This is an
optional step, but is recommended. This feature is enabled by VSstartup or
startup. The purpose of this capability is debugging the DIP during
development, rather than providing information about problems in the
production application. Include as many db_pr statements as are necessary.
The debug information should be strategically placed in the DIP code. When
the DIP is running, issue the trace command from the shell command line to
print debug information on your terminal as it is executed in the DIP code.
The db_pr statements may be left in while the application is in production.
They do not impose a cost or cause any disadvantage.

The trace Command The trace command allows tracing of specified processes and channels.
Trace displays the trace messages on standard out (stdout) that are
executed by the specified processes after trace was invoked. For example to
trace TSM, channels 0-5, and DIP stock_dip, enter the following at the
command line:

trace tsm ch 0-5 stock_dip

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 172

Any number of processes and channels can be traced, but only one trace
should be running at any one time. Having two trace commands running
concurrently causes a sporadic and confusing display of trace messages.

See Intuity CONVERSANT System Version 7.0 Administration, 585-313-501,
for additional information on the trace command.

db_pr The db_pr library function applies a variable number of arguments to the
format string to form the output trace string as shown in Figure 25 on page
172.

Figure 25. db_pr Synopsis

#include “spp.h”

int db_pr(format, arg ...)
char*format;/* printf format string */

db_pr trace messages are written to the internal trace buffer and displayed
only if tracing is turned on for the corresponding DIP or process. Otherwise,
trace messages are ignored while the DIP executes. It is recommended that
you use db_pr for trace messages because db_pr writes to the internal trace
buffer only the messages of the processes that currently are being traced.
Messages from other processes not being traced are discarded.

Note: Although the db_pr structure is identical to the printf function, use
db_pr for DIPs that have user interfaces because it allows a more
controlled method of output.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 173

For additional information, see db_pr on page 570 in Appendix C, C-Library
Functions.

db_put The db_put library function applies a single string of an argument and
displays it as shown in Figure 26.

Figure 26. db_put Synopsis

#include “spp.h”

int db_put(string)
char*string;/* string to write out */

db_put trace messages are displayed when tracing is on regardless of what
processes are being traced.

For additional information, see db_put on page 572 in Appendix C, C-Library
Functions.

Step 8: Compile and Execute the DIP
The DIP source program is compiled in a standard method using the
C-compiler (cc) to include the voice system header files and to link the voice
system library libspp.a residing in the directory /vs/lib. The voice system
header files (mesg.h, VS.h, shmemtab.h) reside under /att/include,
/att/msgipc, and /usr/spool/log/head. Whenever a DIP reports errors to
the logger/alerter, make sure that _INSTALLABLE_APPL is defined (that is,
-D _INSTALLABLE_APPL).

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 174

For example, to create the executable version of DIP stock_dip.c, enter the
following:

cc -I/att/include -I/att/msgipc -I/usr/spool/log/head \
-D_INSTALLABLE_APPL -o stock_dip stock_dip.c \
-L /vs/lib -lspp -llog -lprism

Note: This information should appear entirely on one line in the file as
indicated by the backslashes (\) at end of the lines.

If your DIP is an IRAPI application, then the compilation line should be
changed to the following:

cc -I/att/include -I/att/msgipc -I/usr/spool/log/head \
-D_INSTALLABLE_APPL -o stock_dip stock_dip.c -L /vs/lib \
-lirEXT -lirAPI -lspp -lTOOLS -llog -lprism

For more information about the C-compiler, see the SCO UnixWare
documenation.

Once the executable version is created, you can start it manually from the
shell command line or automatically through the inittab file.

4 Data Interface Processes Writing the DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 175

Auto Startup Via
inittab

A DIP can be started and managed automatically by the UnixWare system
process init if it appears in the /etc/inittab file. If you display the inittab file,
entries for the voice system processes like TSM, logdaemon, and iCk are
shown. Typically, one entry is made for each process to run. An entry in the
inittab files consists of fields separated by colons (:) that allow you to specify:

1 A unique label to identify the entry (no more than 4 characters)

2 The run-levels to run the program. Voice system processes and most
DIPs use run-level 4.

3 Whether the program is to be run once only or re-run if it dies

The start_vs command rebuilds the modified inittab file by concatenating all
the files in /etc/conf/init.d. In order for your entries to be permanent, perform
the following procedure:

1 Enter stop_vs to stop the voice system.

2 Edit your entry in the /etc/conf/init.d directory. The following is an
example for a DIP called stock_dip in the init.d directory that runs at
run-level 4, is re-run if it dies, and is labeled PI1.

 a Enter vi stock_dip

 b Add the following to the stock_dip file.

PI1:4:respawn:/local/bin/stock_dip > /dev/null 2>&1

 c Enter :wq

4 Data Interface Processes Troubleshooting

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 176

3 Enter /vs/bin/util/mkitab

4 Enter start_vs to start the voice system.

Now your DIP will start up automatically each time the voice system is
started.
If you experience problems with this procedure, execute touch
/etc/conf/init.d/CONVERSANT before restarting the voice system.

Troubleshooting

This section provides some guidelines for detecting problems with your newly
created DIP. Although not a thorough treatment, this information gets you
started when processes within the voice system appear to be stuck.
Debugging a DIP is similar to debugging other C language programs.

• Message queues

Look for message queues that have unread messages. This may indicate
a stuck process or DIP. Use the ipcs command to display the current
status of the message queues. See the UnixWare SVR4.2 Command
Reference for more information about the ipcs command.

4 Data Interface Processes Troubleshooting

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 177

• Semaphores

A semaphore can lock up the system if processes are waiting for its
release that never happens. One semaphore is used for each posted
process in the BB. Use the ipcs command to display the current status of
the semaphores. See the UnixWare SVR4.2 Command Reference for
more information about the ipcs command.

• Bulletin board

Use the bbs command to display the posted processes in the BB. See
Intuity CONVERSANT System Version 7.0 Administration, 585-313-501,
for additional information.

• DIP and TSM scripts

In mesgsnd, mesgrcv, or dbase, the sender and receiver may be
reversed or the DIP may set the mchan value improperly in the return
message to TSM. Use the ipcs command to display the current status of
the DIP. See the UnixWare SVR4.2 Command Reference for more
information about the ipcs command.

4 Data Interface Processes Hardcoded DIPs

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 178

• Number of processes

If you are trying to run a DIP and the system displays a message similar
to:

cannot fork: too many processes

you may need to increase the maximum number of processes that are
allowed. See Types of DIPs on page 143 for details on how to tune your
system to handle more processes.

• Timeouts

If there is a long pause in a script near a DIP, it usually means that the DIP
did not receive a message, it did not return the message, or it did not
return the message properly.

Hardcoded DIPs

The following tables show the current hardcoded DIPs used in the system.
The DIP name and number are listed, as are the software package that
interfaces with each DIP. The DynaDIPs are listed as “available,” meaning
they are not used to interface solely with one software package. Also, be
aware that some of those marked available are actually called by other
packages. If you do not have a certain package installed on your system,
that hardcoded DIP will not be occupied.

4 Data Interface Processes Hardcoded DIPs

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 179

Table 16. Hardcoded DIPs

DIP Name DIP # Package

agdip3270 DIP0 Host

oraldb DIP1 Local Database

reserved DIP2

RPTDIP DIP3 FAX Actions

Spadm DIP DIP4 Speech Admin

reserved DIP5

reserved DIP6

asaihp DIP7 ASAI

reserved DIP8

ADMDIP DIP9 FAX Actions

xferdip DIP10 Call Bridge

agdiphelper DIP11 Host

DIP12 available

DIP13 available
1 of 3

4 Data Interface Processes Hardcoded DIPs

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 180

DIP14 available

FAXDIP DIP15 FAX Actions

FAXMGR DIP16 FAX Actions

DIP17 available

DIP18 MTC

DIP19 VROP

DIP20 available

reserved DIP21

DIP22 available

DIP23 available

reserved DIP24

FAXCNG DIP25 FAX Actions

dc.sh DIP26 Chan 0

Data Collection

Table 16. Hardcoded DIPs

DIP Name DIP # Package

2 of 3

4 Data Interface Processes Hardcoded DIPs

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 181

dc.sh DIP27 Chan 1

Data Collection

dc.sh DIP28 Chan 2

Data Collection

dc.sh DIP29 Chan 3

Data Collection

dc.sh DIP30 Chan 4

Data Collection

reserved DIP31

DIP32 Voice

Workstation

DIP33 available

DIP34 available

Table 16. Hardcoded DIPs

DIP Name DIP # Package

3 of 3

4 Data Interface Processes TTS_DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 182

TTS_DIP

There are many reasons a DIP may be needed in an application using Text-
to-Speech (TTS). A simple, general DIP is provided with the TTS software to
give an idea of what should be included in a custom DIP. This generic DIP is
called tts_dip. The tts_dip is available through Script Builder as the tts_file
external function.

The tts_dip supports the following functions:

• Read file — Reads a given number of bytes of ASCII text sent via IPC
messages and returns to the calling process (TSM or any other process).
The maximum read is 512 bytes. The default directory for this ASCII file is
/vs/data/tts_files. By providing an absolute path, a script can override
this default directory.

• Reset file — Frees all per-channel space for this file and channel.

• Script termination — If tts_dip receives this message from a valid
channel, it stops all activity for that channel and cleans up the per-channel
space.

4 Data Interface Processes TTS_DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 183

Message Interfaces with tts_dip

The message interfaces with tts_dip are defined in tts_iface.h. The following
messages are accepted by tts_dip:

• READ_FILE — Read from an ASCII file

• RESET_FILE — Reset the file

• SCRIPTTERM — Script termination message (defined in
/att/msgipc/tsm_dip.h)

For READ_FILE and RESET_FILE messages, the following message
structure is used:

struct msg1 {
 struct mbhdr hd;
 int start;
 int to_read: /* Number of bytes to read. Max. 512 bytes. */
 char file{F_NAME_LEN}; /* Max. name length if 128 bytes to
*/

/* allow for absolute path for a file */
/* name. */

};

Fields to_read and start are not used for the RESET_FILE message. The
to_read field should be set to the number of bytes to be read, up to a
maximum of 512 bytes. For READ_FILE, the start field should be set to 0 to
read from the beginning of the file or to 1 to read from the current position in
the file. The tts_dip does not modify the contents of the mtype and mseqno
fields.

4 Data Interface Processes TTS_DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 184

For successful READ_FILE reply messages, the following message structure
is used:

struct msg2 {
 struct mbhdr hd;
 inst Ret_len; /* Number of bytes read */
 char bytes[MAX_READ+1]; /* Actual ASCII text bytes. */
};

The field mcont in the header is set to R_PASS. The Ret_len field indicates
how many bytes were read (this may be less than the requested number of
bytes). If the Ret_len value is less than the to_read value, the end of the file
was reached during the current READ_FILE request.

The following message structure is used for all other message to and from
the tts_dip:

struct ms_univ { /* struct defined in mesg.h */
 struct mbhdr hd;
 long arg[4];
};

No acknowledgment is sent for SCRIPTTERM and RESET_FILE messages.
When one of these messages is received, the tts_dip cleans up the per-
channel space for the channel and closes the file used for that channel.

4 Data Interface Processes TTS_DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 185

If a READ_FILE message fails, the return message mcont is set to R_FAIL
and arg[0] is set to:

• -1 – ASCII text file not found

• -2 – Invalid argument

Message structures and mconts are defined in /att/include/tts_iface.h.

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 186

5 IRAPI

Overview

This chapter provides information about the Intuity Response Application
Programming Interface (IRAPI). This information includes:

• How the IRAPI is organized in relation to the rest of the platform,
terminology associated with the IRAPI, and a system-level architectural
description.

• The Application Dispatch (AD) process that controls applications. This
includes starting applications via the AD process and changing the
contents of the AD tables via the AD-Application Programming Interface
(API).

• The run-time services available through the IRAPI. An example IRAPI
application (chantest) is presented, which provides the basic structure or
framework applicable to most IRAPI applications due to their event driven
nature. The code that implements the chantest application is fragmented
and provides a high level description for each function used. The entire
chantest application is available on the system in the file
/vs/examples/IRAPI/chantest.c.

5 IRAPI Overview

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 187

• Details of the IRAPI functions and data structures and how applications
can be built using them. Functional areas are grouped and example code
fragments illustrate how the functions may be used. In some sections,
the chantest.c file is expanded to illustrate the additional run-time services
available.

• The steps necessary to compile and install an IRAPI application on the
Intuity CONVERSANT System. The compile and install procedure uses
the chantest.c application, available on the system as an example.

• The various tools that are available to an application developer when
trying to debug an IRAPI application.

• The resource management performance issues for IRAPI applications,
including a list of the Resource Manager (RM) driver tunable parameters
for the system. These parameters control the RM driver’s capacity and
behavior.

New IRAPI functions that have been added to this version of the product are:

• irAddPoll

• irCheckRecog2

• irFDSay (replaces irSay – see Note in Text-to-Speech on page 335)

• irInitAllRecog

• irInitRecog

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 188

• irInitRecog2

• irPoll

• irPRIcmdName

• irPRImtName

• irRemovePoll

• irReturn

• irStartRecog2

• irStartRecogTimer2

• irStopAllRecog

• irStopRecog2

• irSubProg

Introduction to the IRAPI

This section provides a brief overview of the Intuity Response Application
Programming Interface (IRAPI) and some of the basic concepts associated it.
This information includes a description of how the IRAPI is organized in
relation to the rest of the platform, terminology associated with the IRAPI, and
a system-level architectural description.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 189

Library Overview

The interface provided by the IRAPI offers a standard development interface
for voice-telephony applications. The IRAPI provides a high-level, C-
language interface to accomplish both voice-processing and telephony
functions. IRAPI’s capabilities include:

• Voice recording, storage, and play

• Telephone touch-tone sending and receiving

• Telephony call progress

• Dial pulse and speech recognition

• Text-to-Speech (TTS) processing

• Resource management

• Time-division multiplexing (TDM) bus management (bridging and
monitoring channels)

The IRAPI includes a general mechanism for starting applications in
response to network events.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 190

Manual Pages for Commands and Parameters

IRAPI manual pages (commonly called man pages) are available on the
system. The section one (1IRAPI) manual pages, describing IRAPI related
command line utilities are stored in /vs/man/cat1. The section three
(3IRAPI) manual pages, describing IRAPI library subroutines are stored in
/vs/man/cat3. The section four (4IRAPI) manual pages, describing IRAPI file
formats, define symbols, events, parameters, resources, and states are
stored in /vs/man/cat4.

Library Parameters

The IRAPI is designed to allow application developers to write applications
easily, while at the same time provide a rich set of options. In any API, these
two goals can be in conflict. In order to avoid burdening commonly used
functions with many parameters, library parameters are used to control
seldom-needed, minor variations of a function’s behavior. These parameters
can be queried and set before the function is invoked. All parameters have
defaults suitable for most applications. Parameters may be channel-specific
or system-wide.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 191

Application Structure and Control

The IRAPI supports voice applications that can serve multiple telephone
channels simultaneously. Multi-channel applications typically manage each
channel of the application independently. This usually involves maintaining
state information for each channel.

Note: Single-channel applications do not necessarily extend to a multi-
channel applications easily, but multi-channel applications are
often almost as easy to write as single-channel applications.

Most IRAPI functions that request voice and telephony services are
asynchronous (that is, non-blocking) functions. These functions return
immediately after initiating a service request rather than blocking until the
service is complete. When a function returns, control is returned to the
application so that it can perform other duties while the requested service is
being carried out. These other duties may include servicing a separate
telephone channel, accessing a host, or querying a database.

Control is passed between the IRAPI and the application. Applications pass
control to the IRAPI so that the library can service requests from hardware
devices in real time. The IRAPI passes control to the application by
generating events. An event is the notification that the IRAPI gives to an
application when some condition occurs. In the standard case, applications
block in the IRAPI until an event is generated. Events are generated by many
conditions. Most importantly, events are generated when asynchronously
requested services are completed. Examples of service-completions include

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 192

completing voice playing or recording, sending touch-tone digits, and the
timeout of the IRAPI clock.

The IRAPI allows an application to associate an event with the specific
service request (that is, specific IRAPI library calls) using a ‘‘tag'' with the
specific service requests from the IRAPI. Applications pass a tag to the
IRAPI when voice or telephony services are requested. The tag is included
with the event information returned to the application.

The IRAPI allows applications to control which events are reported as well as
which conditions cause interrupts. An interrupt is the termination of
voice/telephony functions when some condition occurs. Most IRAPI
interrupts are controlled by the application, but there are some conditions that
cause voice functions to terminate automatically (such as reaching end of a
file during a play). Internally, interrupt processing for certain events (notably
touch-tone arrivals) is handled as a special case to minimize response time to
the event. Note that IRAPI interrupts are not the same as UnixWare system
events.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 193

Resource Allocation

The IRAPI provides applications with access to abstract capabilities and does
not require the application to directly manage the hardware resources
required to provide those capabilities.

The IRAPI attempts to make resources available when the application calls
functions that implicitly require resources (for example, play or record).
When a channel frees the resource, the IRAPI makes it available to other
applications running on the platform. In addition, the IRAPI supports
reserving, freeing, and querying of resources. Where required, an application
may pre-allocate resources to guarantee that those resources are available
when needed. When applications need to be isolate applications from each
other to avoid resource contention, an application can be restricted to use a
only subset of available resources.

The IRAPI provides consistent resource allocation failure modes for both
explicit and implicit requests for dynamic resources. If a required resource is
not immediately available, applications can fail the request immediately,
arrange to wait for the resource forever, or wait for the resource for some
fixed period of time. In the last case, if the resource is not available within the
time period, the application is notified of the failure with an event.

Library states are used by the IRAPI library to maintain information about
channel activities and to prevent applications from attempting illegal
operation sequences. In most cases, applications respond to the events as
they occur and seldom need to know the library state.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 194

Voice Input and Output

Voice objects can be played or recorded to/from memory buffers, voice file
descriptors (which are very similar to UnixWare file descriptors), or UnixWare
files. Unlike previous Intuity CONVERSANT systems, speech is stored in
standard UnixWare filesystems instead of the highly specialized voice file
system. In order to support existing applications and packages that rely on
storing phrases in the voice filesystem, the IRAPI supports the old voice
filesystem semantics via the UnixWare filesystem. This involves mapping
talkfile and phrase numbers to UnixWare files and vice versa.

Speech input and output is under the complete control of the application. It
can be stopped by the application explicitly or implicitly by an interrupt.
During play and coding, the IRAPI can notify the application of the progress
of the action via events. Voice file descriptors can be opened, closed,
positioned, and converted to UnixWare file descriptors. Applications can
query speech files to determine the coding algorithm and convert speech files
from one algorithm to another. Internal components of the IRAPI are
responsible for managing the real-time interface between the filesystem and
resource cards [for example, a speech and signal processor (SSP) card]. In
most instances, the platform reduces the chance that gaps in speech
requests may occur by queuing up speech files for continuous play. The
IRAPI includes capabilities to speak numbers and characters with correct
inflections. Applications have a similar interface and level of control over TTS
activities.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 195

Telephony The IRAPI provides basic telephony for a variety of signaling interfaces.
Applications can answer incoming calls, place outbound calls [with several
options for Call Classification Analysis (CCA)], query and set per-call
information such as Automatic Number Identification (ANI) and Dialed
Number Identification Service (DNIS), dial dual-tone multi frequency (DTMF)
digits, flash, and hang up. The IRAPI handles the specifics of the telephony
type for the application. In cases where a telephony action is not supported
for a given telephony type assigned to a channel, the library reports that the
operation is unsupported.

Input Queue, Dial
Pulse Recognition,
and Speech
Recognition

Touch tones are collected in a unified input queue that can be manipulated in
a variety of ways. The same input queue is used for touch tone, dial pulse
recognition (DPR), and speech recognition input. The IRAPI supports a
flexible built-in mechanism for editing input digits, delimiting sequences of
digits, timing user responses for the first and subsequent touch-tone digits,
and alerting the application when certain input criteria are reached.

Applications have complete control over speech recognition. Recognized
strings are returned via the input queue and therefore have access to all of
the input queue features. In addition, applications can use echo cancellation
to improve recognizer accuracy when speech recognition is required during
voice play. Applications can control the interruption of speech after receiving
input.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 196

TDM Timeslot
Management

The IRAPI provides functions for managing the time-division multiplexing
(TDM) bus and network interface connections to the bus. Applications
running on several channels can bridge their TDM time-slots together in a
variety of ways. An application can monitor an arbitrary channel, which
allows an application to listen to all input and output on that channel. An
IRAPI feature also allows starting, stopping, and controlling the volume of
background recording. Applications can allocate timeslots and start activities
on them.

Channel Ownership The IRAPI uses a default owner to internally manage channel ownership.
The default owner is an application that is notified when a channel is freed
and there are no other pending requests that this channel will satisfy.
Typically, the default owner is the process that is responsible for Default
owner listening for new calls and dispatching applications in response to
them (see “Application Control''). Any process can become the default owner
for a channel.

Applications can negotiate to acquire specific channels or a channel from a
group of channels. As with resources, applications can choose not to wait, to
wait for a fixed period of time, or to wait indefinitely for a channel.

Types of IRAPI
Processes

IRAPI applications can be processes that start and initialize themselves
before they are actually needed by any caller (called permanent processes)
or they can be dynamically created only when needed (called transient
processes). Any number of applications of each type can be configured or be
actively running on any system.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 197

The IRAPI includes a family of functions that allow applications of any type to
invoke one another. These functions model the UnixWare exec(2) function
and allow one application to replace another from the caller’s point of view.
This interface is flexible enough to allow IRAPI applications to pass control to
transaction state machine (TSM) based applications. When processes
invoke one another they can pass information to the invoked process. This
facility supports both standard information such as ANI and DNIS as well as
user-definable information.

IRAPI Organization

The IRAPI is composed of several elements. The Resource Manager (RM)
pseudo-driver manages system resources and call profiles for each active
channel. The call profile is a collection of data about a call including the
channel number, ANI, DNIS, and the start time of the call. The voice
response output process (VROP) manages interactions between the
filesystem and the speech cards. The IRAPI library is linked to processes
that use the IRAPI. The library uses the UnixWare kernel, device drivers for
SSP and network interface (NI) cards, VROP and RM to manage
applications. The library communicates with the maintenance subsystem via
the logger. The Application Dispatch (AD) process is responsible for
examining new calls for DNIS, ANI and channel information in the call profile
and starting the appropriate application based on the call profile.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 198

All processes that use the IRAPI are considered IRAPI applications. TSM is
a multi-channel IRAPI application that runs applications that are driven by
information in scripts. These scripts may be generated by the Graphical
Designer or Script Builder (SB) process. Scripts use the IRAPI to manage
speech pools. Other applications that use the IRAPI might be user
processes, custom applications or conventional Intuity CONVERSANT
system data interface processes (DIPs).

Figure 27 on page 200 shows how the IRAPI is organized in relation to the
system software processes. Figure 28 on page 201 shows how the IRAPI fits
into the voice system architecture. The IRAPI is linked into all processes that
use it. Instances of processes linked to the IRAPI maintain per-process
private data for managing the application/platform interface.

Figure 28 on page 201 shows several processes that use the IRAPI facility.
Only the relationships between processes that are relevant to the IRAPI are
shown in Figure 28 on page 201. For example, all of the voice system
processes invoke the logger.

• Transient process

This is an application that starts when invoked only when an application
should run on a channel. The application can start in response to an
incoming call or in preparation to make an outbound call. The application
uses the IRAPI to interface to the voice system. A transient process can
handle one or more channels.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 199

• Permanent process

This is an application that starts once (usually at system startup). The
application uses the IRAPI to interface to the voice system. It handles
one or more channels of some application.

• Script Builder (SB)

Script Builder uses the IRAPI as part of the speech administration
function.

• TSM

TSM is a multi-channel IRAPI application that runs TAS scripts. Two of
TSM’s pre-IRAPI functions have been moved to other areas: resource
management to the IRAPI and application dispatch to AD.

• Application Dispatch (AD)

AD receives new call indications and determines what application should
be started based on the caller’s channel and dialed number, and uses
irExec to start that application. By default, channel ownership reverts to
AD when applications fail abruptly or release channels.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 200

Figure 27. IRAPI Organization

OA&M

Commands

Permanent

Process
Transient

Process

Other

Development

Environments

Device Drivers TSM

Unix Kernel

Scripts

DIPs

SB

...
...

...

...Intuity Response API

MTC

AD

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 201

Figure 28. IRAPI Architecture Overview

SPIP TRIP TWIP

VROP RM

Unix
File

System

CIO

DIPs

Transient

Process

TAS

Voice Mail

- Application

Server;e.g. SB; Custom

- Applications;

User Processes

e.g.

Installed

Packages

(SP, telephony)

Alerter

Permanent

Process

Application

OA&M

CDH

diskmgr

bgm

AD

Logger

MTC
mtc_

proxy

SB

SP TR T1

TDM Bus

TSM

Script

Data
IRAPI

IRAPI IRAPI IRAPI

IR
A

P
I

Alerter Rules

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 202

IRAPI Run-Time
Architecture

The following describes the basic architecture of the IRAPI:

• The run-time architecture is built in layers to support a more powerful
platform for developing applications. From the IRAPI point of view, many
elements of the software architecture are sophisticated applications. For
example, the TSM and AD processes are standard IRAPI applications.
This means they can co-reside (or be replaced completely) by other
IRAPI applications.

TSM is an example of a horizontal-application: it is an application that
runs other applications. The applications run by TSM support a particular
problem domain. Application developers can create alternative horizontal
applications to support solutions for different problem domains.

In contrast, vertical applications directly solve particular problems. These
applications can coexist and work together with other horizontal and
vertical applications. For example, an application developer could build a
vertical application to provide voice mail to employees or banking
services to customers.

• Since the IRAPI is accessible from C, the full capabilities for developing C
applications under UnixWare are available to the application designer.
The IRAPI is designed to be a vehicle to effectively develop co-resident
applications.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 203

• The IRAPI library is packaged as a shared object file. This packaging
allows upgrades to the library without always forcing the applications to
re-compile. If applications are required to be re-compiled, then
application developers will be notified in release notes.

• In the IRAPI, application control and resource management is distributed
over many processes in the system; the IRAPI coordinates all the
applications. The application dispatch function of TSM — determining
which application to start based on new call information — is handled by
(AD) process. AD starts applications based on scripts as well as IRAPI
processes in response to new calls.

Speech is stored in standard UnixWare filesystems instead of the highly
specialized voice filesystem. VROP no longer manages the voice
filesystem.

Advanced speech technology packages describe themselves to the
system, and that description drives the operation of the system. The
maintenance system exploits the capabilities of the logger/alerter to drive
automated maintenance of the platform. This makes system
maintenance much more automatic and comprehensible.

Distribution of
Responsibilities

The following information details the responsibilities of some the system
processes based on the introduction of the IRAPI:

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 204

Logger

If the IRAPI attempts to control a hardware device and finds an error, it logs
the error in the Intuity CONVERSANT system logger. The logger accepts
the error message and, among other things, forwards it to the Intuity
CONVERSANT system alerter. Alerter actions are driven by these errors
and alerter rules. A standard mechanism for users to introduce application-
level dependencies between hardware components are also supported. This
allows users to specify card dependencies on a per application basis. A
hardware error causes the maintenance process (MTC) to negotiate with the
resource manager to take the broken equipment out of service.

Resource Manager

The Resource Manager (RM) keeps the state of all of the voice system
resources in private data structures. RM manages all of the static and
dynamic resources accessed via the IRAPI. Static resources are channels
and resources fixed to a channel (for example, DSP resources on the IVP-4/6
circuit card). Dynamic resources are resources that are not associated with a
channel (for example, SSP functions for play, code, speech recognition, text
to speech and echo cancellation). RM does not know anything specific about
dynamic resources: the MTC process describes dynamic resources to it as
the system starts and as cards move in and out of service. RM simply
allocates pieces of these cards from the pools that it maintains to applications
that request the resources. The IRAPI functions handle resource allocation.
For example, the IRAPI functions that implement recognition with talkoff are
responsible for ensuring that the appropriate echo cancellation and
recognition resources are acquired and coordinated.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 205

RM is implemented as a pseudo driver (that is, a driver that does not control
any hardware) to allow for a simple and reliable strategy for dealing with
ungraceful application exits and crashes. When an application starts for the
first time, it opens the RM driver. If an application dies unexpectedly, the
close entry point for RM driver is invoked automatically by the kernel as it
closes each file descriptor associated with the process. This unexpected
close signals that an application has terminated abruptly and should have its
resources freed and returned to a sane state.

The RM debug/monitor process (rmdb) can be used to query the state of the
managed resources.

MTC notifies RM as equipment comes into service (through system startup or
OA&M requests). As it does, MTC passes the characteristics of the
resources (as described in the installable packfile) to RM. When cards go in
and out of service, the resource manager notifies the owners. The
description of the capabilities of specific cards or of a specific capability is
associated with the installable package for the card or capability.
Assignments for capabilities running on multi-purpose cards (for example,
speech recognition on an SSP card) are maintained by the MTC platform.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 206

Application Dispatch (AD)

The AD process listens to new calls that arrive on the network, finds an
application to handle the call, and starts the associated application with
irExec. AD uses call information stored in the AD tables (such as DNIS, ANI,
and the port number) to associate applications with calls. The OA&M system
can establish, break, and query this association through the IRAPI. AD holds
all idle channels and releases them upon receiving a request. For example,
the soft_szr command causes TSM to request a channel from AD to run a
TSM script.

Applications can change the behavior of AD via the AD-API. The AD-API
allows users to add entries to the AD table, query the AD table, and remove
entries from the AD table. See Application Dispatch API on page 218. AD
can be instructed to dispatch calls for a subset of the channels in the system.
It is also possible to substitute an alternative AD that implements some other
dispatch logic. For example, an alternative AD might not use fixed tables, but
would rather consult an network control point (NCP) over a network to make
the routing decision.

When a new call arrives, if AD is the application owner for the channel, it
starts the application.

Note: AD need not be the agent for starting applications. Users can
develop and use their own processes that handle the AD function,
or they can rely on the applications to allocate channels and start
themselves up in response to new calls.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 207

Voice Capabilities

Applications use the IRAPI to cause voice activities to happen. Requests to
play or code voice data are passed to the VROP process. Plays or codes
can use memory buffers, entire UnixWare files or UnixWare file descriptors
as sources and destinations. VROP uses the customer input/output (CIO)
processes to read and write information in and out of the UnixWare
filesystem. In order to actually play or code speech, VROP interacts with the
DSP hardware, (for example, SSP and Tip/Ring hardware). For language
playback (LP), the IRAPI uses the tables to associate recorded phrases with
vocabulary items generated by Script Builder (that is, the speech pool) to
support the process of speaking language-independent alphanumeric strings,
numbers, dates, times, and currencies.

Responsibility
Restructure Caused
by the IRAPI

The following information details the differences in system responsibilities
and functions due to the introduction of the IRAPI for Intuity CONVERSANT
System Version 5.0 and later versions:

• TSM

Previously, TSM managed all of the resources in the system: that role
now belongs to RM. TSM also started all applications in response to
network events, was the owner of all idle channels, and was the arbitrator
for channels ownership by applications: that role now belongs to AD. In
Intuity CONVERSANT System Version 5.0 and later, TSM is written as an
IRAPI application and is responsible only for interpreting scripts. Some of
the applications that are started by the IRAPI are traditional TSM scripts.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 208

• VROP

In the previous releases, VROP had several functions:

~ Manage the content of the voice filesystem

~ Use the CIO processes to coordinate the transfer of voice data
between the filesystem and voice buffers

~ Coordinate the transfer of speech data between voice buffers and the
voice cards

In Intuity CONVERSANT System Version 5.0 and later all speech is
stored in UnixWare filesystems (see information on speech filesystem
below) and VROP no longer manages them.

• Voice filesystem

The voice filesystem was carefully designed to achieve maximum
performance. Accessing voice stored in UnixWare files is substantially
less efficient. On the other hand, accessing voice via voice filesystems is
much more difficult because it requires the VROP process to run and
because the application interface to VROP is limited. Other changes in
the Intuity CONVERSANT System Version 5.0 and later architecture - the
introduction of the 486 as the sole CPU platform and the use of alternate
and larger block size filesystems (like the Veritas 8K file system in
UnixWare) - removes some of performance constraints that dictated the
use of the voice file system.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 209

Storing speech in the UnixWare filesystem also gives application
developers the same semantics for speech as are available for standard
UnixWare files. Specifically, the concept of file pointers, seek, and
append are supported that are not offered with voice filesystem.

Many existing applications and packages rely on storing phrases in the
voice filesystem. In order to allow these applications to continue to
function, the system supports voice file system semantics via the
UnixWare filesystem. This involves mapping talkfile and phrase numbers
to UnixWare files and vice versa. For example, talkfile 7 phrase 99 might
map to the UnixWare file:

/home2/vfs/talkfiles/7/99

TSM instructions, Script Builder actions and administrative commands
that rely on the voice filesystem are changed to support this mapping.

• Voice system card interface

Requests for action by any voice system card are channeled through a
library associated with that card. Because there may be many processes
that are interacting with a specific card at any point in time, each card type
has its own interface process (IP). The interface process for the SSP is
SPIP, for the Tip/Ring TRIP and for the T1 (tee-one) card, TWIP. The IPs
read indications from the cards and forward them to the appropriate
processes through IPC messages. Messages associated with a given
channel are sent to the application owner of the channel. This
relationship between a channel and its application owner is established

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 210

when the process executes irInit. This relationship is tracked by RM and
all messages are routed through RM. RM sends the message to the IPC
message queue associated with the channel. If there is no owner
associated with a channel, RM holds messages for that channel in a
deferred queue for a fixed period of time. Usually, the AD process is the
default application owner for all of the channels in the system and,
therefore, has the responsibility for dispatching applications on all
channels.

The IRAPI interfaces directly with each of the cards to provide specific
services. Requests for speech recognition, TTS, CCA, and primary rate
interface (PRI) functions are handled by the IRAPI by invoking functions
on SSP cards through the card driver. The IRAPI interfaces directly with
the T1 and Tip/Ring circuit cards for telephony and touch-tone services
through the T1 and Tip/Ring drivers. Responses from SSPs or SPs, T1s
and Tip/Rings are passed to the IRAPI though the IPs.

• Data interface processes (DIPs)

Applications must use the irPostEvent function to call a DIP through the
IRAPI. This allows them to use standard IRAPI functions to send
messages, wait for responses, and decode the results. The DIPs
themselves may still use the conventional mesgsnd/mesgrcv interface
(see Chapter 4, Data Interface Processes). The mesgsnd and mesgrcv
functions are re-implemented to use irPostEvent internally. All existing
DIPs have to be re-compiled for Intuity CONVERSANT System Version
5.0 and later to pick up the new mesgsnd/mescrcv. This interface is

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 211

supported for compatibility with the TSM-based application model. New
DIPs (created to run with Intuity CONVERSANT System Version 5.0 and
later software) should be written exclusively in terms of the IRAPI (that is,
using irPostEvent and irWait).

• OA&M interface

The IRAPI interfaces with the platform OA&M system to allow the OA&M
system to display and track the system monitor state of applications and
voice hardware.

• Call data handler (CDH) process

IRAPI applications can use irCallData(3IRAPI).

IRAPI with Intuity CONVERSANT System Features

The introduction of the IRAPI increases the implementation choices for an
application developer without introducing new feature interaction problems.

The IRAPI library supports all the features like TTS, WholeWord speech
recognition, FlexWord speech recognition, Adjunct/Switch Application
Interface (ASAI), Line-Side T1 (LST1), and PRI that have been introduced in
Intuity CONVERSANT system software in previous releases. As proof of the
completeness of the support for other features, note again that TSM has
been modified to use the IRAPI library directly rather than lower level libraries
to support these features.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 212

Scripts provided by add-on packages like FAX Actions can be irExec’ed or
irSubProg’ed from IRAPI applications much like the same scripts could be
exec'ed from other TAS scripts.

Application Organization

Deciding how to implement the application must be decided early in the
application design process. You have the following choices:

• Use Voice@Work or Script Builder and the TAS script language

• Write a special purpose program for your application

• Write a general-purpose program for your application and cast your
application in terms of that program

First, Voice@Work or Script Builder and TAS script still solve all of the
problems that they used to solve: they make it very easy to build a very large
class of applications. The TAS language is an extremely efficient method of
designing voice applications. The amount of memory devoted to holding the
chantest application is very small: the overhead for a full UnixWare process
is reasonably large. For larger applications, this advantage disappears.

If you choose to write an IRAPI application, you must choose whether you
want the application to control a single channel or multiple channels, and
whether you want the application to start only when it is invoked (a transient
process) or whether you want the application to start when the voice system

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 213

starts (a permanent process) and be ready to quickly handle calls when they
come in.

A transient process is created by irExecvp, etc., when the irExec or
irSubProg call is made. This does not use memory for applications that are
not actually running, but takes extra time and effort to get the application
loaded and running. This time can be significant if the application to be
started is large and the platform is otherwise busy. When a transient process
is started, the first time that it calls irWait, an IRE_EXEC event is immediately
generated. The process should use this event to determine which channel to
acquire and on which channel to start the application. A permanent process
is usually started out of inittab at the same time that the voice system is
started. Permanent processes wait for IRE_EXEC messages and respond to
them by starting the application running. Since they are started out of inittab,
they consume a slot in the process table and some amount of memory
(although if the process is not accessed in a long time, pages that are not
required are likely to be paged out to the swap device).

All UnixWare executable programs are composed of three basic parts:

• Text - The instructions in the program. This section cannot normally be
modified, and therefore each instance of an application that references
that particular data section can safely share the same copy of the text.

• Data - The initialized data in the program. This area is dynamic.

• BSS space - The data not initialized data in the program.

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 214

Note: Since data and BSS areas can be changed at run time, each
instance of a process has a unique copy of these areas.

Multiple copies of the same IRAPI-based application use less space whether
permanent or transient processes.

The IRAPI is delivered as a UnixWare shared object. Shared objects also
have text, data, and BSS sections. If more than one application links against
the IRAPI all copies of that application use the same IRAPI text space.
Unique copies of the data and BSS sections are allocated for the process.
The approximate space used by the Intuity CONVERSANT system IRAPI
library is shown in Table 17 on page 214.

Since AD, TSM, and other processes use and link against the IRAPI library,
there is no additional memory cost for user applications to use the IRAPI text
area.

Keep the following considerations in mind when determining whether to use
multi-threaded or single-threaded processes.

• Multi-threaded processes are more memory-efficient than multiple single-
threaded processes.

Table 17. Memory Usage

Library Text Data BSS

/usr/lib/libirAPI.so 962 000 33 000 13 000

/usr/lib/libirEXT.so 1 000 0 0

5 IRAPI Introduction to the IRAPI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 215

• Increasing the number of processes increases the amount of work the
kernel must do to schedule and coordinate them.

• Multi-threaded processes are more processor-efficient than single-
threaded processes.

Single-threaded vs.
Multi-threaded
Permanent vs.
Transient

The following information details the differences between single-threaded
and multi-threaded applications and between permanent and transient
processes. As noted in the table below, permanent, multi-threaded
processes are the most efficient arrangement.

• Permanent processes are loaded and initialized at system startup time;
transient processes are loaded and initialized on irExec or irSubProg.

• Permanent processes are quicker to load and start processing user inputs
Permanent process also use CPU resources more efficiently.

• Single-threaded processes can mix irWait()’s throughout their program.
This is impossible for multi-threaded applications.

• Transient processes must deal with creating unique names.

• Permanent processes may want to clean out the message queue as they
start (as shown below). Transient processes do not want to miss an
IRE_EXEC message.

while (irCheck () != IRE_NULL)

;

5 IRAPI Application Control

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 216

the application characteristics between single-threaded and multi-threaded
applications and between permanent and transient processes are compared
in Table 18 on page 216.

Application Control

This section describes the Application Dispatch (AD) process that controls
applications. This includes starting applications via the AD process and
changing the contents of the AD tables via the AD-Application Programming
Interface (API).

Table 18. Application Characteristics

 Single Threaded Multi-Threaded

Transient Simplest to design and
build

Unusual choice but
possible

Permanent Structure almost identical
to single-threaded,
transient

Most complex and efficient
(for example, TSM)

5 IRAPI Application Control

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 217

Application Dispatch Process

The AD process is a permanent, multi-threaded IRAPI process that starts (or
dispatches) an application on a channel when a new call arrives for that
channel. By default, the AD process is the default owner of all the channels
on the system. The default owner for a channel receives the
IRE_DEFOWNER event when another process initializes a channel and
there is no other process waiting for that channel. In other words, the default
owner is the process that accepts ownership of a channel when there is no
other process that wants the channel. The default owner for a channel is set
using the irDefOwn function.

When an out-of-service channel is restored to service via the restore
command, the MTC_PROXY process places the channel on-hook and then
calls irDeinit for that channel. If there is no process waiting for ownership of
that channel, AD receives an IRE_DEFOWNER event for that channel. AD
uses irInit to initialize the channel and sets the IRP_CHAN_NEGOTIATION
parameter to IRD_ALLOW. This allows another process to irInit the channel
if it desires. AD then calls irWait to wait for another IRAPI event.

When the AD process receives an IRE_NEWCALL representing an incoming
call for a channel, AD uses the iraQueryADTables function to determine what
application should be started on this channel.

5 IRAPI Application Control

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 218

Application Dispatch API

The AD-API is a subset of functions within the IRAPI that manipulate the AD
tables and the associated service registration files.

Application
Dispatch Tables

There are two AD tables that are used to determine which application should
be dispatched when a call arrives on a particular channel:

• AD Channel table

This table contains at most two applications per channel: the standard
application and the startup application. The standard application is
typically the only application used and is displayed for a channel if the
user uses the display channel or display card commands. The startup
application is used only when special processing is required when a new
call arrives on a channel before the standard application starts up. In this
case, an IRAPI application that performs the special processing is
assigned to the channel as the startup application and the regular
application is assigned as the standard application. When a new call
arrives, the AD process uses the AD-API function iraQueryADTables to
determine which application should be started. Since a startup
application is assigned, AD irExecs the channel to the startup application.
The startup application performs the special processing and then either
irExecs the channel back to AD or uses the iraQueryADTables function
itself (with the IRD_AD_STANDARD argument) to determine which
application to irExec.

5 IRAPI Application Control

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 219

For example, a startup application could be used with the converse vector
step for a DEFINITY ECS or compatible switch. Either or both of the
standard and startup applications can be null or the special application
‘‘*DNIS_SVC.'' The ‘‘*DNIS_SVC'' application indicates that the AD
DNIS/ANI table (described below) should be searched to find the
application for this channel. If both the standard and startup applications
are null, an error is reported in the error log.

• AD DNIS/ANI table

This table contains an ordered list of dialed number identification service
(DNIS) and automatic number identification (ANI) ranges and associated
applications. This table is ordered primarily by DNIS ranges, most to
least specific. If two entries have the same DNIS range but different ANI
ranges, the entries are ordered by ANI ranges, most to least specific. The
order of the AD DNIS/ANI table is important because AD uses the AD-API
iraQueryADTables function to determine which application to start. If
necessary, iraQueryADTables searches the AD DNIS/ANI table in order
and returns the application for the first entry whose DNIS and ANI ranges
contain the DNIS and ANI of the incoming call

5 IRAPI Application Control

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 220

DNIS and ANI ranges

A range is considered most specific if it contains (or matches) only one
number. A range is considered least specific if it contains (or matches) any
possible number. The notation for DNIS and ANI ranges is a:b, where a and
b are positive integers and a <= b. Ranges can completely contain other
ranges, but ranges cannot overlap to prevent ambiguity across the overlap
ranges. For example, the set of ranges 4000:4000,3500:6000,0000:9999 is
valid. But given the previous set of ranges, the range 4500:8000 is invalid
because it overlaps the range 3500:6000.

The IRA_STR_RANGE structure contains the DNIS and ANI range
information.

The iraSetStrRange(3IRAPI-AD) function sets the contents of this structure.
Some AD-API functions take pointers to this structure as arguments.

Initializing AD Tables

The AD tables are initialized at system startup. Typically, application
developers should not initialize the AD tables themselves, but several
functions are supplied if they are needed. The iraInitADTables function
initializes both the AD Channel and DNIS/ANI tables, while the
iraInitADChannel and iraInitADDnisani functions initialize only the AD
Channel table or only the AD DNIS/ANI table, respectively. After
initialization, all applications in the AD Channel table are set to NULL and the
AD DNIS/ANI table is empty. Any previously existing application
assignments are lost.The global parameter IRP_AD_MODE must be set to

5 IRAPI Application Control

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 221

IRD_AD_READWRITE to initialize the AD tables; otherwise, the functions
return an IRER_PERMISSION error.

Querying AD Tables

The iraQueryADTables and iraQueryADDnisani functions can determine
which application should be started in response to a new call arrival. The
iraQueryADTables function uses both the AD Channel table and the AD
DNIS/ANI table to determine the application, while the iraQueryADDnisani
function only uses the AD DNIS/ANI table.

A parameter passed into the iraQueryADTables function influences its
behavior. If the parameter is IRD_AD_STARTUP, the iraQueryADTables
function looks at the startup application in the AD Channel table for the
particular channel. If the application is not null and not ‘‘*DNIS_SVC,'' it then
returns this application. If the application is ‘‘*DNIS_SVC,'' then the
iraQueryADTables function searches the AD DNIS/ANI table to the find first
entry that matches the DNIS and ANI for this call. If it finds an entry whose
DNIS and ANI ranges match those of the call, it returns the application
associated with the entry; otherwise, it returns an error. If the startup
application is null, the iraQueryADTables function looks at the standard
application for the channel.

If the parameter is IRD_AD_STANDARD or if the startup application is null for
a particular channel, the iraQueryADTables function looks at the standard
application for the channel. If the application is not null and not
‘‘*DNIS_SVC,'' it then returns this application. If the application is

5 IRAPI Application Control

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 222

“*DNIS_SVC'' or null, then the iraQueryADTables function searches the AD
DNIS/ANI table to find the first entry that matches the DNIS and ANI for this
call. If it finds an entry whose DNIS and ANI ranges match those of the call, it
returns the application associated with the entry; otherwise, it returns an
error.

Reading AD Tables

Applications can read the contents of the AD Channel and DNIS/ANI tables
by using the iraReadADChannel and iraReadADDnisani functions,
respectively. The iraReadADDnisani function reads the AD DNIS/ANI table
in order and return each entry one at a time. Subsequent calls to
iraReadADDnisani returns the next entry. The iraRewindADDnisani function
is used to reset (or rewind) the list, so that the next call to iraReadADDnisani
returns the first entry in the list.

Changing AD Tables

Applications can be assigned to a particular channel or for a particular
DNIS/ANI range by using the iraAddADChannel and iraAddADDnisani
functions. The global parameter IRP_AD_MODE must be set to
IRD_AD_READWRITE to make changes to the AD tables; otherwise, the
functions return an IRER_PERMISSION error.

5 IRAPI Application Control

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 223

Service
Registration Files

Service registration files are read by the iraAddADChannel and
iraAddADDnisani functions and stored in an AD_APPL structure when an
application is added to the AD tables. The information contained in the
service registration files is used as arguments to the irExec or irSubProg
functions when the application is started. The AD_APPL definition is:

typedef struct ad_appl {

char service[IRD_SERVICE_NAME_LEN]; /* name of the service */
char process[IRD_PROCESS_NAME_LEN];/* name of the process

*/

char register_file[IRD_MAX_FILE_LEN]; /* name of the
registration file */

int type; /* type of application */
unsigned long attributes; /* attributes of application */
time_t modtime; /* modification time of registration file */
AD_APPL;

IRAPI application developers must create the service registration files for
their applications and deliver the service registration files along with the
application files. Service registration files are created by using the
defService command (see below).

defService
command

The defService(1IRAPI) command is used by IRAPI application developers
to create the service registration file for an IRAPI service. The service
registration file is required to assign and/or delete a service to/from a channel
or DNIS and/or ANI. See the assign, defService, and delete commands in
Appendix A, “Summary of Commands,” in Intuity CONVERSANT System

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 224

Version 7.0 Administration, 585-313-501. For TSM scripts, the output of the
tas command serves as the service registration file for the script.

If it is successful, defService creates the service registration file
/vs/trans/<service>.T. If the command is called without options, defService
prompts for all the necessary information. For example, to create the service
registration file for the chantest service, enter:

defService -n -p chantest -t P chantest

IRAPI Run-Time Services
This section discusses the run-time services available through the Intuity
Response Application Programming Interface (IRAPI) for the Intuity
CONVERSANT system. First, an example IRAPI application (chantest) is
presented. This application provides the basic structure or framework
applicable to most IRAPI applications due to their event driven nature. The
code that implements the chantest application is fragmented throughout the
chapter and provides a high level description for each function used. The
entire chantest application is available on the system in the file
/vs/examples/IRAPI/chantest.c.

This section also details the IRAPI functions and data structures and how
applications can be built using them. Each section is grouped by functional
area and example code fragments illustrate how the functions may be used.
In some sections, the chantest.c file is expanded to illustrate the additional
run-time services available.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 225

Application Framework

A well-written IRAPI application must be event-driven rather than procedural.
Most IRAPI functions are non-blocking functions. Those that implement
voice or telephony functions, for example, initiate the specified action and
return immediately. The application must then wait for an event generated by
the IRAPI for status or completion information for the initiated action. State
information should be maintained for each channel handled by the
application. This information determines the step to perform after receiving
an IRAPI event.

In general, a well designed IRAPI application has the following components:

• Process initialization

• Application initialization

• Application execution

• Application termination

• Process termination

Following a discussion of each application component is an implementation
of each task using the chantest.c code. The chantest application prompts for
and collects touch tones. After receiving four touch tones, it plays back the
touch tones collected. This behavior is repeated until four zeros (0000) are
entered to terminate the application.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 226

Process
Initialization

The following tasks should be performed by an IRAPI program when
execution starts:

1 Register the process with the system with the irRegister(3IRAPI) function.
This function must be passed a unique process name. Upon successful
completion, a UnixWare message queue key is returned.

For example, the chantest.c application uses the irRegister(3IRAPI)
function as follows:

if ((qid=irRegister("chantest")) < 0) {
 irPError ("Error on irRegister");
 exit (1);
}

2 Allocate and initialize per-channel process data. Multi-channel IRAPI
applications may use the irNumChans(3IRAPI) function to get the number
of channels configured in the system and allocate per-channel data
structures accordingly.

As chantest.c is a multi-channel application, it uses irNumChans(3IRAPI)
to obtain the number of channels in the system and allocates a CHLDATA
data structure for each channel. By allocating one data structure for
every channel in the system, it can be assigned to handle any or all
channels simultaneously:

if (initData(irNumChans(IRD_REAL)) < 0) {
 printf("Initialization failed\\\n");

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 227

 exit(1);
}

The following code shows the chantest’s initData() routine:

/* Global variables */
struct CHLDATA {
 int State;
 int RetryCount;
 int PlayDone;
 ir_event_t InputDoneEvent;
} *Chl;

int initData(int nchans)
{
 if(nchans <= 0) return(-1);
 if((Chl = (struct CHLDATA *)calloc(nchans,

 sizeof(struct CHLDATA))) == 0)
 {
 return(-1);
 }
 return(0);
}

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 228

Application
Initialization

Before an IRAPI application can start on a specific channel, it must perform
the following tasks:

1 Obtain ownership of the channel.

If the IRAPI application is assigned as a service to one or more channels,
it should wait for an IRE_EXEC event from the IRAPI using the
irWCheck(3IRAPI) function. This event is passed to an application when
a new call arrives on a channel to which the application is assigned, or
when another application uses irExec(3IRAPI) or irSubProg(3IRAPI) to
run the application. When the IRE_EXEC event is received, call the
irInit(3IRAPI) function to obtain ownership of the channel specified in the
IRE_EXEC event data structure [see the online instructions on the system
about IrEVENTS(4IRAPI)].

If the application is to run on a channel to which it is not assigned, it
should first request ownership of the channel with irInit(3IRAPI) or
irInitGroup(3IRAPI). It should then use irWCheck(3IRAPI) to wait for the
IRE_CHAN_GRANT event before continuing with the application on that
channel. See Channel Management on page 248.

In each case, irInit(3IRAPI) or irInitGroup(3IRAPI) is used to obtain a valid
channel ID (cid). This cid value is used as an argument to all other
channel specific IRAPI functions and is included as part of the event data
structure for all events that result from calling these functions.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 229

After process initialization, chantest enters a while loop to wait for IRAPI
events with irWCheck(3IRAPI). The chantest application is designed to
be executed by the Application Dispatch (AD) process when a new call
arrives on a channel to which chantest is assigned. Therefore, after
process initialization, the chantest process does not start running the
application until it receives an IRE_EXEC event. All events are handled
by the switch statement within the while loop. The following code
fragment shows how chantest initializes the application after receiving an
IRE_EXEC event:

ir_event_t ev;
channel_id cid;
int chan;
 .
 .
 .
while (irWCheck(&ev) != IRR_FAIL) {
 switch (ev.event_id) {
 case IRE_EXEC:
 chan = ev.event_mod1;
 if (irInit (chan, &cid, IRD_IMMEDIATE, 0) != IRR_OK) {
irPError ("Error on irInit");
 break;
 }

Chl[chan].State = BUSY;

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 230

 if(setEvents(cid) < 0) {
 cleanup("Error on setEvents", cid);
 break;
 }
 if(setTTParams(cid) < 0) {
 cleanup ("Error on setTTParams", cid);
 break;
 }
 .
 .
 .
 }
}
irPError("irWCheck Failed.");
exit(1);

After receiving an IRE_EXEC event, chantest gets the channel number
from the event_mod1 modifier in the event data structure and attempts to
obtain ownership of the channel and a valid channel identifier (cid) with
irInit(3IRAPI).

2 Any application specific data should be allocated and/or initialized after
channel ownership is obtained.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 231

3 Set the initial disposition of any IRAPI events used by the application with
irSetEvent() if the default disposition is not used. See the online
instructions on the system about irEvent(3IRAPI) and IrEVENTS(4IRAPI).
With irSetEvent(), events may be ignored or interrupt telephony or voice
activity on the channel when they occur.

The dispositions of the IRE_INPUT, IRE_INPUT_DONE, IRE_WINK and
IRE_DISCONNECT events are set with chantest’s setEvents()
subroutine. The IRE_INPUT and IRE_INPUT_DONE events are simply
set to notify chantest when they occur. These events indicate caller input.
The IRE_WINK and IRE_DISCONNECT events indicate call termination.
Chantest sets them to notify of their occurrence and to interrupt any voice
play activity on the channel when they occur.

int setEvents(channel_id cid)
{
 /* Enable events */
 if (irSetEvent(cid, IRE_CALL_PROG, IRF_NOTIFY) ==
IRR_FAIL ||
 irSetEvent(cid, IRE_ENERGY, IRF_NOTIFY) == IRR_FAIL ||
 irSetEvent(cid, IRE_INPUT, IRF_NOTIFY) == IRR_FAIL ||
 irSetEvent(cid, IRE_INPUT_DONE, IRF_NOTIFY) == IRR_FAIL
||
 irSetEvent(cid, IRE_WINK, IRF_NOTIFY | IRF_PLAYINTR |
IRF_CALLINTR)
== IRR_FAIL ||
 irSetEvent(cid, IRE_DISCONNECT, IRF_NOTIFY |

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 232

IRF_PLAYINTR | IRF_CALLINTR)
== IRR_FAIL) {
return(-1);
 }
 return(0);
}

4 Set any IRAPI parameters to be used by the application with irSetParam
or irSetParamStr [see the online instructions on the system about
irParam(3IRAPI)].

Chantest uses its setTTParams() subroutine to set initial values of four
IRAPI caller input parameters. The values of these parameters determine
when an IRE_INPUT_DONE event is generated:

int setTTParams(channel_id cid)
{
 /* Set up for reading INPUT_LEN digits from input queue
*/
 if (irSetParam(cid,IRP_INPUT_LEN,INPUT_LEN) == IRR_FAIL
||
 irSetParam(cid, IRP_TT_PRETIME, 8000) == IRR_FAIL ||
 irSetParam(cid, IRP_TT_INTERTIME, 5000) == IRR_FAIL ||
 irSetParamStr(cid, IRP_INPUT_DELIM1, "#") == IRR_FAIL)
{
 return(-1);
 }

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 233

 return(0);
}

The IRP_INPUT_LEN parameter specifies the maximum input length
(INPUT_LEN is defined as 4 characters). The pre-digit and inter-digit
timeout parameters are set to 8000 and 5000 milliseconds (8 and 5
seconds) respectively. The pound sign (#) is set as an input delineator for
input shorter than IRP_INPUT_LEN.

Application
Execution

After application initialization, the application is ready to perform whatever
IRAPI functions necessary to interact with the caller in the way defined by the
application. Usually, the best way to implement this interaction is through an
event switch inside a continuous loop on the irWCheck(3IRAPI) function.
Each case in the switch should handle a unique event, perform the next event
generating function, and return to the wait loop [irWCheck()]. Each time an
application executes an event generating function, it should not execute
another IRAPI function until it receives the event that terminates that function.

For example, an application might perform the following functions after
application initialization:

1 Answer the phone with irAnswer(3IRAPI) and wait for the
IRE_ANSWER_DONE event.

In the chantest.c application, after the IRE_EXEC event is received and
chantest initializes the application, it answers the incoming call with
irAnswer(3IRAPI). It then returns to the while loop to wait for the

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 234

IRE_ANSWER_DONE event. The IRE_ANSWER_DONE event contains
the result of the answer attempt.

while (irWCheck(&ev) != IRR_FAIL) {
 switch(ev.event_id) {
 .
 .
 .
 case IRE_EXEC:
 .
 .
 .
 if (irAnswer(cid) == IRR_FAIL) {
 cleanup ("Error onirAnswer",cid);
 }
 break;

 case IRE_ANSWER_DONE:
 if (ev.event_mod1 != IREM_COMPLETE) {
 cleanup("Error in IRE_ANSWER_DONE", cid);
 break;
 }
 startChanTst(cid);
 break;

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 235

2 Queue up voice files to play with irFPlay(3IRAPI), start play with
irEnd(3IRAPI), and wait for the IRE_PLAY_DONE event.

Chantest uses its startChanTst() subroutine when the
IRE_ANSWER_DONE event is received to perform this step of the
application. This subroutine plays the introductory announcement,
‘‘Begin testing.''

void startChanTst(channel_id cid)
{
 int chan = irCid2Chan(cid);
 if (chan == IRR_FAIL) {
cleanup("Can’t get channel from cid", cid);
return;
 }
 Chl[chan].PlayDone = IGNORE_WHEN_DONE;
 Chl[chan].RetryCount = 0;
 if (irFPlay(cid, 0, "/speech/begn.tst") < 0) {
cleanup ("Error on irFPlay", cid);
return;
 }
 playInstr(cid);
}

The startChanTst routine converts the cid to a channel number with
irCid2Chan(3IRAPI). It uses the channel number to set application
specific data for the channel. The PlayDone flag indicates what is to be

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 236

done when the next IRE_PLAY_DONE event arrives. The RetryCount
indicates the number of times the application has prompted the caller
after getting no input. irFPlay(3IRAPI) is used to queue up the “begin
testing'' introductory phrase stored in the UnixWare file /speech/begn.tst
for playing. The playInstr() subroutine then is called to play the
instructions that are part of the initial chantest prompt.

void playInstr(channel_id cid)
{
 int chan = irCid2Chan(cid);
 if (chan == IRR_FAIL) {
cleanup("Can’t get channel from cid", cid);

return;

 }

 Chl[chan].PlayDone = START_TIMER_WHEN_DONE;

 if(irFlushInput(cid) == IRR_FAIL ||

 irSetEvent(cid, IRE_INPUT, IRF_PLAYINTR | IRF_NOTIFY)

== IRR_FAIL ||

 irSetEvent(cid, IRE_INPUT_DONE, IRF_NOTIFY) == IRR_FAIL

||

 irFPlay(cid, 0, "/speech/ent.4.tt") == IRR_FAIL ||

 irFPlay(cid, 0, "/speech/all.rptd") == IRR_FAIL ||

 irFPlay(cid, 0, "/speech/term.4.0") == IRR_FAIL ||

 irEnd(cid, 0, 0) < 0) {

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 237

cleanup ("Error in playInstr", cid);

 }

}

Before the prompt is played, the PlayDone flag is set to indicate that the
touch-tone input timer should be started when the next IRE_PLAY_DONE
event is received. The irFlushInput(3IRAPI) function clears any caller
input that has been given before the prompt. This synchronizes caller
input with prompts. The irSetEvent(3IRAPI) function is used to set the
IRE_INPUT event to interrupt speech play when the event is generated.
This enables the “talkoff'' feature, allowing the caller to interrupt a prompt
with touch-tone input. Three separate phrases are queued up with
irFPlay(3IRAPI) that make up instructions to the caller: “Enter 4 touch
tone digits,'' “All digits except star and pound will be repeated,'' “Terminate
your input with a pound sign.'' Speech play is started with the call to
irEnd(3IRAPI) and the subroutine returns back to the main while loop to
wait for the next event.

3 Start the touch-tone input timer with irStartTTTimer(3IRAPI), collect input
with irGetInput(3IRAPI), and wait for the IRE_INPUT_DONE event.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 238

Touch-tone input is always being collected and placed on the input queue.
The IRE_INPUT event indicates that input has been placed on the input
queue. The IRE_INPUT_DONE event indicates that the input on the
input queue matches conditions specified by the input queue parameters.

~ IRP_INPUT_LEN

~ IRP_TT_PRETIME

~ IRP_TT_INTERTIME

~ IRP_INPUT_DELIM1

~ IRP_INPUT_DELIM2

Chantest sets these input parameters during application initialization with
its setTTParams() subroutine. After the playing of prompt is started,
chantest returns to the main while loop to wait for the next event. If the
caller waits for play to complete before entering any input, the
IRE_PLAY_DONE event arrives when chantest’s PlayDone flag is set to
START_TIMER_WHEN_DONE. Chantest must start the touch-tone timer
with irStartTTTimer(3IRAPI). Chantest then returns to the main while loop
to wait for the IRE_INPUT_DONE event:

case IRE_PLAY_DONE:
 switch(Chl[chan].PlayDone) {
 .
 .
 .
 case START_TIMER_WHEN_DONE:

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 239

 if (irStartTTTimer(cid) == IRR_FAIL)
 cleanup("irStartTimer Failed", cid);
 break;
 case INPUT_DONE_WHEN_DONE:
 input_done(cid, &Chl[chan].InputDoneEvent);
 break;

IRE_INPUT and IRE_INPUT_DONE events are also handled in the main
while loop. The IRE_INPUT event is simply ignored since nothing needs
to be done until the IRE_INPUT_DONE event arrives. The touch-tone
timer does not have to be restarted before the IRE_INPUT_DONE event.
The IRAPI automatically restarts the timer using the IRP_TT_INTERTIME
parameter value between IRE_INPUT events.

If the IRE_INPUT_DONE arrives when the IRAPI library is still in the
IRS_PLAYING state, processing of the IRE_INPUT_DONE event is
delayed until the IRE_PLAY_DONE event arrives. This is done by setting
the channel’s PlayDone flag to INPUT_DONE_WHEN_DONE and saving
the IRE_INPUT_DONE event structure. The IRE_INPUT event always
precedes the IRE_PLAY_DONE event when speech is talked off. The
library is not in the IRS_IDLE state until the IRE_PLAY_DONE event is
received. (See above where the INPUT_DONE_WHEN_DONE value is
used with the IRE_PLAY_DONE event.) This ensures that the IRAPI is in
the IRS_IDLE state before the application continues. The IRAPI must be
idle before more speech can be queued to play.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 240

case IRE_INPUT_DONE:
 if (irLibState(cid) == IRS_PLAYING) {
 Chl[chan].PlayDone = INPUT_DONE_WHEN_DONE;
 Chl[chan].InputDoneEvent = ev;
 } else {
 input_done(cid, &ev);
 }
 break;

case IRE_INPUT: /* Event is ignored */
 break;

The input_done() subroutine evaluates the modifiers from
IRE_INPUT_DONE:

void input_done(channel_id cid, ir_event_t *evPtr)
{
 int chan = irCid2Chan(cid);
 if (chan == IRR_FAIL) {
cleanup("Can’t get channel from cid", cid);
return;
 }
 switch(evPtr->event_mod1) {
 case IREM_INPUT_LENGTH:
 case IREM_INPUT_DELIM:
Chl[chan].RetryCount = 0;
/* play back touch tones to caller */
play_tt(cid);

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 241

break;
 case IREM_TT_PRE:
 case IREM_TT_INTER:
if(Chl[chan].RetryCount++ >= 3) {
 /* 3 tries with no input. Abort transaction. */
 if (irSetEvent(cid, IRE_INPUT, IRF_NOTIFY) == IRR_FAIL
||
 irFPlay(cid, 0, "/speech/aborted") == IRR_FAIL ||
 irFPlay(cid, 0, "/speech/bye") == IRR_FAIL ||
 irEnd(cid, 0, 0) == IRR_FAIL) {

cleanup ("Error processing IRE_INPUT_DONE", cid);
return;

 }
 Chl[chan].PlayDone = DISCONNECT_WHEN_DONE;
} else {
 /* play instructions again */
 playInstr(cid);
}
break;
 default:
cleanup("Unexpected IRE_INPUT_DONE event modifier", cid);
break;
 }
}

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 242

Input is removed from the input queue with irGetInput(3IRAPI) and played
back to the caller in chantest’s play_tt() subroutine:

void play_tt(channel_id cid)
{
 int len;
 char buf[INPUT_LEN + 1];
 char *bufPtr;

 if ((len = irGetInput(cid,buf,INPUT_LEN)) == IRR_FAIL) {
 cleanup("irGetInput Failed in play_tt", cid);
 return;
 }
 buf[len] = 0;

 if (irSetEvent(cid, IRE_INPUT, IRF_NOTIFY) == IRR_FAIL ||
 irSetEvent(cid, IRE_INPUT_DONE, IRF_IGNORE) == IRR_FAIL
){
 cleanup("irSetEvent failed in play_tt", cid);
 return;
 }

 for(bufPtr = &buf[0]; *bufPtr != 0; bufPtr++) {
 switch(*bufPtr) {
 case ’0’:
 (void) irFPlay(cid, 0, "/speech/n.0");
 break;
 case ’1’:

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 243

 (void) irFPlay(cid, 0, "/speech/n.1");
 break;
 .
 .
 .
 case ’9’:
 (void) irFPlay(cid, 0, "/speech/n.9");
 break;
 }
 }
 if(strcmp(buf, "0000") == 0) {
 if (irFPlay(cid, 0, "/speech/bye") == IRR_FAIL) {
 cleanup ("Error on irFPlay", cid);
 return;
 }
 Chl[chan].PlayDone = DISCONNECT_WHEN_DONE;
 } else {
 Chl[chan].PlayDone = REPROMPT_WHEN_DONE;
 }
 if (irLibState(cid) != IRS_PLAY_QUEUED) {
 reprompt(cid);
 return;
 }
 if (irEnd(cid, 0, 0) < 0) {
 cleanup ("Error on irEnd", cid);
 }
}

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 244

Notice that the play_tt() subroutine shown above plays back caller input
after using irSetEvent(3IRAPI) to set the IRE_INPUT event to
IRF_NOTIFY only, thereby clearing the IRF_ITR flag. This disables
“talkoff'' so that the caller may not interrupt this play. A check is done to
see if the caller entered 4 zeros. If so, a “good-bye'' message is played
and the channel's PlayDone flag is set to disconnect when the
IRE_PLAY_DONE event for that message arrives.

4 Disconnect with irDisconnect(3IRAPI), wait for the
IRE_DISCONNECT_DONE event, and terminate the application.

Application
Termination

After disconnect, the application should return the channel to the system
default owner with irDeinit(3IRAPI). Once irDeinit() has been called, the cid
value originally obtained for the channel through irInit(3IRAPI) or
irInitGroup(3IRAPI) is invalid and should no longer be used.

If an irSubProg(3IRAPI)’ed process wants to return channel ownership back
to a parent process, it should call irReturn on the channel_id. Once irReturn
has been called, the cid value originally obtained for the channel through irInit
or irInitGroup is invalid and should no longer be used.

The application should also reset or deallocate any application specific data
that it uses.

Chantest disconnects using irDisconnect(3IRAPI) on the input “0000'' or upon
multiple input timeouts [see the play_tt() and input_done() subroutines].
When irDisconnect(3IRAPI) is called, chantest must wait for an

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 245

IRE_DISCONNECT_DONE event before releasing the channel with
irDeinit(3IRAPI). The following code fragment shows how chantest
disconnects after a “good-bye'' announcement has finished playing (when its
PlayDone flag has been set to DISCONNECT_WHEN_DONE):

case IRE_PLAY_DONE:
switch(Chl[chan].PlayDone) {
 .
 .
 .
 case DISCONNECT_WHEN_DONE:
 if (irDisconnect(cid, 0) < 0) {
 cleanup("Error on irDisconnect", cid);
 }
 break;
 .
 .
 .
 }
 break;}

 case IRE_DISCONNECT_DONE:
 if (irDeinit(cid) < 0) {
 cleanup("Error on irDeinit", cid);
 }
 break;

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 246

Once irDeinit(3IRAPI) is called, the channel is returned to the default owner
(the AD process) and the associated cid obtained through irInit(3IRAPI)
becomes invalid.

Applications must also handle network events such as hang-up. If the caller
hangs up before the application terminates, an IRE_DISCONNECT or
IRE_WINK event is generated. Applications should set these events during
application initialization to interrupt voice play when they occur (see
chantest’s setEvents() subroutine). When the hang-up events occur, the
application should call irDisconnect(3IRAPI) to disconnect. If the IRAPI
library is still in the IRS_PLAYING state when the IRE_DISCONNECT or
IRE_WINK event arrives, the disconnect processing should be delayed until
the IRE_PLAY_DONE event arrives. The following code waits for the
IRE_PLAY_DONE event since irDisconnect(3IRAPI) cannot be called until
the channel is idle.

case IRE_DISCONNECT:
case IRE_WINK:
 if (irLibState(cid) == IRS_PLAYING) {
 Chl[chan].PlayDone = DISCONNECT_WHEN_DONE;
 } else if (irDisconnect(cid, 0) < 0) {
 cleanup ("Error on irDisconnect", cid);
 }
 break;

An alternative to waiting for the IRE_PLAY_DONE event is to use
irDeinit(3IRAPI) or irReturn(3IRAPI).

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 247

Process
Termination

IRAPI processes should irDisconnect(3IRAPI) and irDeinit(3IRAPI) or
irReturn(3IRAPI) any channels they are using. If the process should
terminate ungracefully, however, the system returns the channel and any
system resources being used by it to their initial state.

The chantest application is designed to be a permanent process. It starts
when the voice system is started and does not terminate until the voice
system is stopped. A transient process, designed to terminate when the
application terminates, would only need to use the exit(2) UnixWare system
call.

Run-Time Services

The following sections detail the IRAPI run-time services. The run-time
services are grouped under the following headings:

• Channel management

• Event and interrupt management

• Call profile

• Voice operations

• Telephony support

• Timeslot management

• Speech file access

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 248

• Dial pulse and speech recognition

• Resource management

• Text-to-Speech (TTS)

• Platform management

Channel
Management

Channel management involves operations that affect the ownership of
channels and the passing of ownership from one channel to another. Except
for very short intervals when the channel ownership is being transferred from
one channel to another, all channels must be owned by some process. Only
the channel owner may affect the behavior or the activities of a channel.
Processes may compete for channel ownership and may wait for channel
ownership as they would any other resources. Processes have some control
over when channels may be taken away from them; however, maintenance
processes may remove channels forcibly from other processes.

The channel_id (cid) discussed throughout this section is used by the IRAPI
to associate a channel to its pertinent information. Specific functions convert
channel numbers to channel_id’s and channel_id’s to channel numbers [see
the online instructions on the system about irChan2Cid(3IRAPI) and
irCid2Chan(3IRAPI)].

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 249

Default Ownership

Since all channels must be owned by some process, when no process takes
ownership of a channel, the default owner becomes the channel owner. All
in-service channels are owned by their default owner; the default owner is
AD. Alternate default owners can be created (discussed later in this section).

Primarily, the default owner handles IRE_NEWCALL events. The
IRE_NEWCALL event indicates that a new call has arrived. Assuming AD is
the default owner, the AD tables are queried based on the channel number,
dialed number identification number (DNIS), or automatic number
identification (ANI) values. Through this query, a process to which ownership
of the channel should be given is identified and the channel is
irExec(3IRAPI)’ed to that process. After being irExec(3IRAPI)’ed, the
IRP_SERVICE_NAME parameter is set to the value indicated during service
definition [see defService in Appendix A, “Summary of Commands,” in Intuity
CONVERSANT System Version 7.0 Administration, 585-313-501].

The default owner holds all idle, in-service channels. An idle channel is any
channel whose service state is IRD_INACTIVE [see irServiceState(3IRAPI)]
and whose library state is IRS_IDLE [see irLibState(3IRAPI)]. Service and
library states are described in more detail later in this chapter. When
processes request channels owned by the default owner, the channel is
typically relinquished upon request. Control over relinquishing idle channels
is enabled through the IRP_CHAN_NEGOTIATION parameter (described in
more detail later in this chapter).

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 250

All out-of-service channels are owned by MTC_PROXY rather than the
default owner. MTC_PROXY takes ownership of out-of-service channels and
does not relinquish ownership of the channel unless instructed to do so by
the MTC process. MTC_PROXY may also forcibly seize channels from AD
or other owners when in-service channels are being taken out-of-service.

When a process relinquishes ownership of a channel and there are no other
processes pending for ownership of that channel, channel ownership is
returned to the default owner. The default owner receives the IRE_DEFOWN
event when channel ownership is returned. After receiving the
IRE_DEFOWN event, the default owner should take ownership of the
channel via irInit(3IRAPI).

Execing Applications on Channels

A process executes or “execs” another process on a channel via an
irExec(3IRAPI) function. Channels may be irExec'd to permanent or transient
processes. Permanent process are typically multi-channel applications run
from inittab. Transient processes are exec(2)'d by the irExec function and
typically exit(2) when the call, or their portion of it, completes.

Ownership of the channel is relinquished by the current owner with an irExec.
Once an irExec function is called, the calling process must stop using the
channel_id. As was discussed earlier, AD irExec's channels based on
application assignments.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 251

Channel ownership is made available immediately to the irExec’d application.
After receiving the IRE_EXEC event, the channel should be initialized
immediately via irInit(3IRAPI).

Parameters may be used to allow the child process to run in a context similar
to the parent process. Also, the following parameters may be used to allow
the parent process to pass data to the child process:

• IRP_EXEC_BUF is a data buffer that is not interpreted by the IRAPI. A
parent process sets this buffer and its length through irExec(3IRAPI)
arguments. The child application then accesses the data via
irGetParamStr(3IRAPI).

• The parameter IRP_REGISTER allows data to be passed similar to
IRP_EXEC_BUF; however, there is not a length parameter associated
with IRP_REGISTER and parent processes must set explicitly the
parameter via irSetParamStr(3IRAPI).

Many IRAPI parameters and parameter values are saved across irExec
boundaries. Any resources explicitly allocated or restricted via
irReserveResource(3IRAPI) and irRestrictResource(3IRAPI), respectively,
are saved across irExec boundaries. Half bridges [irHBridge(3IRAPI)] remain
active across irExec boundaries. Echo cancellation [irEcho(3IRAPI)] remains
on. See IrPARAMETERS(4IRAPI) for a complete list of the parameters.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 252

SubProging Applications on Channels

A process subprog’s another process on a channel via an irSubProg(3IRAPI)
function. Channels may be irSubProg'ed to permanent or transient
processes. Permanent processes are typically multi-channel applications run
from inittab. Transient processes are exec(2)'ed by the irSubProg function
and typically exit(2) when the call, or their portion of it, completes.

Ownership of the channel is relinquished by the current owner with an
irSubProg(3IRAPI). Once an irSubProg function is called, the calling process
must stop using the channel_id. Channel ownership is made available
immediately to the irSubProg'ed application. After receiving the IRE_EXEC
event, the channel should be initialized immediately via irInit(3IRAPI). Once
the called process gives up control of the channel with irReturn(3IRAPI), then
channel ownership reverts back to the parent process. The parent process
may use the channel_id again.

As with irExec, parameters may be used to allow the child process to run in a
context similar to the parent process. The discussion in the previous section
on the IRP_EXEC_BUF and IRP_REGISTER parameters applies to
irSubProg and irExec.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 253

Execing TAS Script Applications

 The following parallels exist between the IRAPI and TAS scripts:

• IRAPI IRP_EXEC_BUF parameter and the TAS script argument X.0

Any TAS script irExec'ed or irSubProg’ed from an IRAPI application has
access to data passed via the IRP_EXEC_BUF parameter through the
X.0 code.

• IRAPI IRP_REGISTER parameter and the TAS script registers r.0 through
r.15

The TAS script registers are preloaded with the values found in
IRP_REGISTER, assuming that the data for this parameter is arranged
as a block of 16 continuous integer values.

See Chapter 3, TAS Script Instructions for information on argument types.

The following example shows how a tas application is started from an IRAPI
process. The registers are set with the data supplied through the register
argument and the buf and buf_len arguments set the exec buffer. Note that
IRP_EXEC_BUF and IRP_EXEC_BUF length are set automatically by the
irExecp (or irSubProgp) function. The define symbol “TSM'' is defined in
/att/include/mesg.h.

int exec_tas(channel_id cid, const int *register, const char
*buf,
 int buf_len, const char *service)
{

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 254

 (void) irSetParamStr(cid, IRP_REGISTER, register);
 if (irExecp(cid, service, TSM, buf, buf_len) == IRR_FAIL)
{
 return(0);
 }
 return(1);
 }

Gaining Ownership of a Channel

The irInit(3IRAPI) and irInitGroup(3IRAPI) functions support requests to gain
ownership of a channel. irInit(3IRAPI) attempts to gain ownership of a
particular channel, while irInitGroup(3IRAPI) attempts to gain ownership of
some channel in a group. The concept of channel groups is unchanged from
prior releases and groups are administered in the same way (see Chapter 3,
“Configuration Management,” in Intuity CONVERSANT System Version 7.0
Administration, 585-313-501). However, the following special groups are
defined with the IRAPI:

• IRD_REAL_CHANS — Includes all channels associated with a physical
network connection

• IRD_VIRTUAL_CHANS — Includes all channels defined through the
IRP_VIRTUAL_CHANS global parameter [see irAPI.rc(4IRAPI)]. Virtual
channels allow applications to run on channels that are not associated
with a physical network port. Virtual channels support a subset of IRAPI
operations.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 255

Gaining ownership of a channel depends on current ownership and activity.
If a channel was just irExec'ed or irSubProg’ed to an application, the channel
is, in effect, unowned for a short period of time. The processes receiving the
IRE_EXEC event (the irExec'ed or irSubProg’ed process) should take
ownership of the channel immediately via irInit(3IRAPI). The IRAPI does not
allow the channel to go unowned for more than 5 seconds; if the target
process does not take ownership, ownership returns to the default owner. If,
after receiving an IRE_EXEC event, a process immediately calls
irInit(3IRAPI) on the channel, channel ownership is granted immediately [as
indicated by a return code of IRR_OK from irInit(3IRAPI)].

A process may attempt to “seize'' ownership of a channel. For example,
processes may seize channels as a result of a request to start an outbound
call. irInit(3IRAPI) should be used to seize ownership of a particular channel
and irInitGroup(3IRAPI) should be used to seize ownership of any idle
channel from a particular group.

When seizing a channel, a process must wait for channel ownership since
negotiations must be carried out with the current channel owner. Therefore,
a request for channel ownership not made as a result of an IRE_EXEC event
returns either IRR_FAIL or IRR_PENDING.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 256

A channel requested from another process is removed from the current
owner if both of the following are true:

1 IRP_CHAN_NEGOTIATION is set to IRD_ALLOW

2 The channel is idle; that is, the service state is IRD_INACTIVE and the
library state is IRS_IDLE

When a channel is taken away from a process in this manner, an
IRE_CHAN_REMOVED event is sent to the previous owner.

If IRP_CHAN_NEGOTIATION is set to IRD_CONDITIONAL, the current
owner receives the IRE_CHAN_REQUESTED event. The current owner
may ignore the event or release the channel via irDeinit(3IRAPI) or
irReturn(3IRAPI).

AD sets IRP_CHAN_NEGOTIATION to IRD_ALLOW; therefore, unless AD is
dispatching a call on the channel (that is, the service state is not
IRD_INACTIVE), AD gives up ownership of channels immediately upon
request.

A process secures ownership of a channel when:

• irInit returns IRR_OK

• The IRE_CHAN_GRANT event is received following a return of
IRR_PENDING from irInit

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 257

IRE_CHAN_DENY is returned if the current owner does not release the
channel after an irInit(3IRAPI), or if no channel in the group specified with
irInitGroup(3IRAPI) is released before the timeout specified in return_mode.

The outcalling version of chantest (chantest_oc.h) uses irInit(3IRAPI) to seize
an idle channel. See the sample application on the system.

Relinquishing Ownership of a Channel

A process relinquishes ownership of a channel by one of the following:

• Calling irDeinit(3IRAPI) — Returns channel ownership to the default
owner or a pending owner. This is the recommended and preferred
method to relinquish ownership of an irExec’ed process. It allows the
library a chance to idle the channel and return it gracefully to the default
owner, or to hand channel ownership to a pending process. The system
considers process termination of channel owners to be an error and a
system error is logged.

• Calling exit(2) or some other process termination, such as dumping core
— Returns channel ownership to the default owner or a pending owner.
By definition, transient processes exit(2) after successfully releasing a
channel via irDeinit(3IRAPI) or irReturn(3IRAPI); however, if the channel
is not in the IRS_IDLE state, the IRAPI, running in the context of the
current channel owner, must idle the channel. Idling a channel may
require asynchronous communication with other system processes. The
process must wait for the IRE_DEINIT_DONE event before exiting. The

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 258

code fragment below shows the expected behavior of transient
processes. This example assumes that after the application completes a
play, it releases the channel and exits. Note that IRE_DEINIT_DONE is
disabled by default and must be explicitly enabled.

• Calling irExec(3IRAPI) to pass ownership to another process — Renders
the channel_id invalid and removes channel ownership from the calling
process after a successful return from irExec(3IRAPI). See Execing
Applications on Channels on page 250 for additional information.

• Calling irSubProg(3IRAPI) to pass ownership to another process —
Renders the channel_id temporarily invalid (for the duration of the
process being irSubProg’ed) and removes channel ownership from the
calling process after a successful return from irSubProg(3IRAPI). See
SubProging Applications on Channels on page 252 for additional
information.

• Calling irReturn(3IRAPI) to pass ownership to another process —
Renders the channel_id invalid and removes channel ownership from the
calling process after a successful return from irReturn(3IRAPI). See
Execing Applications on Channels on page 250 for additional information.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 259

• Having ownership forcibly removed — Generates the
IRE_CHAN_REMOVED event and renders the channel_id invalid

irWCheck(&ev) {
 switch(ev.event_id) {
 .
 .
 .
 IRE_PLAY_DONE:
 (void) irSetEvent(ev.cod, IRE_DEINIT_DONE,
IRF_NOTIFY);
 (void) irDeinit(ev.cid);
 break;

 IRE_DEINIT_DONE:
 exit(0);
 .
 .
 .
 }
}

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 260

Library States

The IRAPI maintains state information about channel activities. These library
states prevent applications from overloading telephony hardware and
eliminate ambiguities in the library. For example, an idle channel is in the
IRS_IDLE library state, and a playing channel is in the IRS_PLAYING library
state. Most states indicate the activity currently active on the channel. There
are also several state modifiers including:

• IRS_PENDING — Indicates that some activity is waiting until resources
are available. The activity cannot be started until resources are available,
at which time the IRS_PENDING modifier is cleared.

• IRS_QUEUED — Indicates that an activity has been queued but not yet
started

• IRS_DEINITING — Indicates that a channel is being deinitialized. A
channel_id in this state can not be used.

The irLibState(3IRAPI) function is used to determine the library state of a
channel. The irSName(3IRAPI) function returns a character string containing
the name of the states and/or modifiers of the library state passed as an
argument.

Library states are useful for resolving ambiguities about the ordering of
events, such and IRE_INPUT and IRE_PLAY_DONE, or for debugging
applications. Applications should not use the library state to drive behavior.
Application behavior should be driven by the events that result from
asynchronous activities.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 261

Exec vs. Subprog

In summary, for a transient child process both irExec and irSubProg perform
a fork(2) and exec(2).

In the case of irExec, channel ownership goes from the parent process to the
child process. When the child process relinquishes channel ownership the
default owner then owns the channel.

In the case of irSubProg, channel ownership goes from the parent process to
the child process. When the child process relinquishes channel ownership
the parent process resumes ownership of the channel and may continue to
use the channel_id associated with the channel. The child process returns
ownership to the parent via irReturn.

For a permanent child process neither irExec nor irSubProg perform a fork(2)
and exec(2) as the permanent child process is already running. The
permanent child process was started via /etc/inittab or similar mechanism.

Channel ownership behavior as described above with transient child
processes is the same with permanent child processes. TAS scripts may
irExec or irSubProg IRAPI applications via the exec or subprog script
instructions. IRAPI applications may irExec or irSubProg TAS scripts via the
irExec or irSubProg functions. The irExecService or irSubProgService
functions are especially useful here.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 262

The UnixWare tunable parameter called NCONTEXTSTACK defines the
maximum number of irSubProg’ed processes available to a single IRAPI
application. The default value of this parameter is 3; the minimum value is 1
and the maximum value is 10. If more than NCONTEXTSTACK processes
are irSubProg’ed, then the return from irSubProg is -1 and the value of irError
is set to IRER_SYSERROR and irSysError is set to ENOMEM.

Event and Interrupt
Management

IRAPI applications are event driven. This means that the application must
respond properly to completion events that result from commands initiated by
the IRAPI application (such as a speech play request) or miscellaneous
externally induced events (such as an incoming telephone call). See
irEVENTS(4IRAPI) for a description of all possible events.

By default, the library notifies the application of most events. The application
may request that it be notified of all the events. Some events can be masked
meaning that an application may ask not to be informed of the event (that is,
the event is to be ignored). Some of the more important events are non-
maskable meaning that the application must be informed about the event.
Generally an event is non-maskable if the application would likely encounter
state transition errors by trying to ignore the event.

By properly responding to the events as they occur, an application seldom
needs to check the library or service states that are maintained by the IRAPI
library. Applications may occasionally need to maintain a small amount of
application state information in order to properly handle the events that occur.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 263

The IRAPI library allows an application to interrupt activities with events.
Interrupts see the premature stopping of some IRAPI activity such as playing
of speech. For example, an application may want to interrupt speech after
receiving a touch tone so the caller does not have to listen to the entire
prompt.

Controlling Events
The action taken by the library in response to an event may be modified by
the routines described in irEvent(3IRAPI).

• irSetEvent(3IRAPI) may be used to control the action taken for a library
event. This routine may be used to ignore an event, to enable the
reporting of the event, or to have the event automatically interrupt voice or
telephony activity on the channel.

The action argument to irSetEvent is an ORed result of some of the
following values:

~ IRF_CALLINTR — Interrupt calling

~ IRF_DEINIT — Interrupt all activity and deinit

~ IRF_IGNORE — Ignore the event

~ IRF_NOTIFY — Notify on event

~ IRF_PLAYINTR — Interrupt playing

~ IRF_RECINTR — Interrupt recording

~ IRF_SAYINTR — Interrupt saying (Text-to-Speech)

~ IRF_SUBPROG_NOTIFY — Pass this event back up to the parent

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 264

• irGetEvent(3IRAPI) can be used to return the current control action for an
event.

• irInitEvents(3IRAPI) can be used to reset event control actions for all
events to the default actions. This function is called automatically by
irDeinit(3IRAPI) and also can be called explicitly by the application.

Detecting Library Events

The following routines are used to detect library events:

• irWait(3IRAPI) waits for an event to occur (but not return the event).

• irCheck(3IRAPI) gets the next event (or IRE_NULL as an indication that
there are no more events).

• irWCheck(3IRAPI) waits for an event and then returns the first event to be
processed by the application. irWCheck() does not return until there is an
event to report. This function combines the actions of irWait() and
irCheck() and is suitable for most applications.

Note: A few applications may need to call irCheck() directly if they need
to be able to detect that there are no pending events and then
take some action other than calling irWait() to wait for the next
event.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 265

The following code fragment shows an example of irWCheck():

while (irWCheck(&ev) != IRR_FAIL) {

 cid = ev.cid;
 chan = irCid2Chan(cid);

 switch(ev.event_id) {

 case IRE_EXEC:
 .
 .
 .
 case IRE_PLAY_DONE:
 .
 .
 .
 }
}

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 266

Handling Events in a Timely Manner

An IRAPI application must handle events in a timely manner to prevent
problems from occurring. Network interface timing errors may occur, or
callers may hear speech breaks or other undesirable behavior.

An IRAPI application must call irWCheck (or irWait and irCheck) frequently to
avoid these problems. This is especially true for permanent IRAPI
applications that are handling multiple channels simultaneously. A
permanent IRAPI application must not allow itself to be blocked while waiting
for an input/output (I/O) or other request that could take more than a few
milliseconds to complete. For example, it is unwise to write an IRAPI
application that is blocked while waiting for the response to a complex
database query that might take seconds to complete. A separate data
interface process (DIP) may be necessary in this case.

Preferably, IRAPI applications should be written so that the only blocking
occurs within irWait or irWCheck. Internally, irWait uses the UnixWare
system call msgrcv to wait for a message that might represent an IRAPI
event. irCheck() also calls msgrcv (with a no-wait flag) if there are no
pending events.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 267

Polling with Stream-Oriented Devices

irWait is compatible with UnixWare signals in that irPoll(3IRAPI) functions can
be used on stream-oriented devices. These functions may be used to multi-
plex input from irWait(3IRAPI) and other file descriptors.

int handle_poll(int fd, short revents)
{

/* handle your input here */
}
main()
{

...
irAddPoll(fd, POLLRDNORM|POLLHUP, handle_poll);
while(1)
{

while(irWCheck(&ev) != IRE_NULL)
{

switch(ev.event_id)
{

.

.

.
}

}
}

}

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 268

Polling for Other Input Using IRAPI Timers

If an application simply needs a frequent stimulus to poll for the handling of
non-IRAPI activity, the application can set a process-oriented timer to
generate an IRE_CLOCK event at regular intervals with ten millisecond
granularity. See the following code fragment for an implementation example

main ()
{

 inttag=0xfeed;

 /* set a repeating timer for 2 seconds */
 irStartPTimer (2000, 1, tag);
 while (1) {

 while (irWCheck(&ev) != IRE_NULL) {
 switch (ev.event_id) {
 case IRE_CLOCK:
 /* handle your other activity here,
 * taking care not to sleep */

 .
 .
 .

 }
 }

 }
}

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 269

Polling for Other Input with SIGALRM

The UnixWare alarm system call can be used to interrupt irWait at fairly
regular intervals to handle other activity input. The use of alarm allows less
control on the accuracy of the polling rate than using IRE_CLOCK in the
previous example because alarm generates an interrupt at the given time
with one second granularity.

void
handle_alarm (int signal_no)
{

/* handle your input here, taking care not to sleep */
alarm (2);

}

main ()
{

sigset (SIGALRM, handle_alarm);
/* set a repeating timer for 2 seconds */
alarm (2);
while (1) {

while (irWCheck(&ev) != IRE_NULL) {
switch (ev.event_id) {

 .
 .
 .

}
}

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 270

}
}

Polling for IRAPI Activity

As a last resort, an IRAPI application can block on other activity (only when
necessary) and poll the IRAPI library as frequently as possible.

main ()
{

while (1) {
 /* wait on and handle your input here,
 * making sure to enter this loop frequently. */

 while (irCheck(&ev) != IRE_NULL) {
switch (ev.event_id) {

 .
 .
 .

}
 }
}

}

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 271

IRAPI Event Tags

IRAPI functions that initiate speech or telephony activity which result in a
subsequent completion event have a tag argument. This tag can be used for
whatever purpose the application chooses. The same tag value is returned in
the tag field of the resulting completion event [see IrEVENTS(4IRAPI)].

The tag value is not used internally by the IRAPI library and may contain any
integer value that the application chooses. The tag can be used to resolve
any ambiguity on event handling. The application may choose to use the tag
for any of the following:

• Application state information (for example, indication of next action to
take)

• Resolving race conditions (for example, sequence numbers)

• Table lookup (for example, matching an IRE_CHAN_GRANT event with
the corresponding irInitGroup function)

Call Profile The call profile is a set of data elements that provide a context that
determines the behavior of some functions, internal system event processing,
and application dispatching.

The call profile is divided into two groups:

• Parameters affect the operation of functions and event processing.

• Information elements allow information to be transmitted from the
telephone network to the IRAPI and vice versa.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 272

Parameters

Parameters are used to affect the behavior of or set options on functions.
Once parameters are set initially for some application, they need not be re-
specified for a function each and every time it is used. Therefore, for many
functions, parameters are used instead of function arguments.

There are two types of parameters, channel specific and global. Channel
specific parameters must be set and queried for each individual channel.
Global parameters are set system wide; they are also read only, and are not
part of the call profile since they are not specific to a channel or a call.

Channel-Specific Parameters

Channel specific parameters, or parameters, for the purposes of this section,
are defined in IrPARAMETERS(4IRAPI). Each parameter has several
attributes defined in Table 19 on page 272.

Table 19. Channel-Specific Parameters

Parameter Attributes

type Indicates an integer or string type.

size Indicates the size, in bytes, required to contain the parameter value.
All integer type parameters occupy sizeof(int) bytes; string type
parameters vary in size.

1 of 2

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 273

Parameter values may be retrieved via irGetParam(3IRAPI) and
irGetParamStr(3IRAPI) for integer and string type parameters respectively.
Parameter values may be set via irSetParam(3IRAPI) and
irSetParamStr(3IRAPI) for integer and string type parameters, respectively.

When a channel is released via irDeinit(3IRAPI) or irReturn(3IRAPI), most
parameters are reset to their default values. The default values are listed in
IrPARAMETERS(4IRAPI). The irInitParam(3IRAPI) and
irInitAllParams(3IRAPI) functions are also provided to set a single or all
channel parameters to its/their default values. Most default values are not
affected by the application environment or system administration settings;
however, some are. For instance, the default value for
IRP_FLASH_DURATION is taken from the values specified by the switch
integration settings (see Chapter 6, “Switch Interfaces,” in Intuity
CONVERSANT System Version 7.0 Administration, 585-313-501).
Furthermore, its value is meaningless for certain telephony types.

save-on-exec Indicates the parameter value persists that are saved across a call
to irExec(3IRAPI) or irSubProg(3IRAPI). These parameters provide
a communication path from parent to child process and allow a child
process to execute in a context similar to the parent's with respect to
IRAPI functions.

Table 19. Channel-Specific Parameters

Parameter Attributes

2 of 2

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 274

Since channels are released to AD through irDeinit(3IRAPI) and AD does not
change the parameters’ default settings, any channel irExec(3IRAPI)’d from
AD on an IRE_NEWCALL event has its parameters set to their default
values.

Note: Getting and setting string type parameters should be done with
caution. irGetParamStr(3IRAPI) copies exactly the number of
bytes specified. It does not interpret NULL characters nor does it
NULL terminate strings. Applications are required to NULL
terminate strings if the parameters containing them are as large
as the string. irSetParamStr(3IRAPI) also does not interpret
NULL characters and always copies the full parameter size out of
the program space. Therefore, source arguments to
irSetParamStr should point to sufficiently large areas of memory.
The non-interpretation of NULL characters allow string type
parameters to be used for both character string and buffer data
types.

The chantest.c application, available on the system in the file
/vs/examples/IRAPI/chantest.c, shows getting and setting string-type
parameters.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 275

Global Parameters

Global parameters are used to set system wide options that affect the
behavior of some IRAPI functions. Global parameters are set or modified by
manually editing the /vs/data/irAPI.rc file. Global parameters are read-only
from IRAPI applications. The irGetGlobalParam(3IRAPI) and
irGetGlobalParamStr(3IRAPI) functions provide access to global parameters
for integer and string type parameters, respectively. See irAPI.rc(4IRAPI) for
global parameters descriptions and their default settings.

Information Elements

Information elements allow some network connections to describe incoming
calls to the voice system. They also allow the voice system to describe
outgoing calls to the network.

• Set by incoming calls: IRD_ANI, IRD_DNIS, IRD_REDIRECTING, and
IRD_INBOUND_SERVICE.

• Set by application to describe outbound calls: IRD_SERVICE_TYPE,
IRD_BEARER_CAP, and IRD_OUTBOUND_ANI.

The IRAPI interface to information elements is similar to the channel
parameter interface, including integer and string types, and supported
through the following functions:

• irGetIE(3IRAPI) — Gets an integer type information element

• irGetIEs(3IRAPI) — Gets a string type information element

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 276

• irSetIE(3IRAPI) — Sets an integer type information element

• irSetIEs(3IRAPI) — Sets a string type information element

See the online instructions on the system about irIE(3IRAPI) for detailed
information on these functions.

Voice Operations This section discusses how to perform voice operations using IRAPI
functions. These functions are used to play pre-recorded speech and to
record speech from the caller.

Speech Queuing

Voice coded speech data may be placed on the channel play queue from a
file or an internal buffer. Play commences when the irEnd(3IRAPI) function is
called. Coded speech [irPlay(3IRAPI) functions] and TTS [irSay(3IRAPI)
functions] queuing or playing cannot be mixed. A call to irEnd() must be used
between queuing different types of speech (voice or TTS). Play of one type
of speech must be stopped before another type is queued for play.

Pre-recorded speech may be queued for play with any combination of the
irFPlay(3IRAPI) or irLP(3IRAPI) functions. Speech stored in a voice file may
be queued for play with the irFPlay() function containing the UnixWare path
name of the voice file. irFPlay() queues the entire contents of the file given
for play. A portion of a file may be queued for playing by obtaining a voice file
descriptor from irOpen() function and using it with the irPlay() function. The
voice file descriptor may be positioned at any point in the file using

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 277

irLSeek(3IRAPI) and passed to irPlay() with a length specification (in
milliseconds). This queues the portion of the open file for play. Speech
stored in an internal buffer may be queued for play with the irBPlay() function.

Language playback routines in irLP(3IRAPI) may be mixed with the
irPlay(3IRAPI) routines to queue speech necessary for playing numbers and
characters from the Enhanced Basic Speech package. The irSpeakChar()
function may be used to queue a character string for play. ASCII characters
that do not have corresponding phrases in the Enhanced Basic Speech
package are skipped. The irSpeakNum() function may be used to play whole
numbers. It does not support speaking numbers in the billions and trillions
because most of these numbers do not fit into an integer variable. These
functions also support speaking numbers and character strings with rising,
falling, or total inflections.

Speech Play and Control

The following functions are used to control the actual playing of queued
speech.

• The irEnd(3IRAPI) function starts play of queued voice or TTS. The
IRF_REMEMBER flag may be used with this function to allow a voice play
request to be restarted with irPlayResume(3IRAPI). (This flag is not valid
for TTS play requests.) Once irEnd() is executed, play must complete
before more voice or text may be queued. Play is complete when the
application receives an IRE_PLAY_DONE event.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 278

• The irPlayResume(3IRAPI) function resumes a “remembered” play
request after it has stopped [when the IRF_REMEMBER flag is used with
irEnd()].

Note: Applications should handle the possible denial or delay of voice
resource allocation when irEnd() is used. Depending on the value
of the IRP_RESOURCE_RETURNMODE parameter
[seeirPARAMETERS(4IRAPI)], irEnd() or irPlayResume() may
return IRR_FAIL or IRR_PENDING if the voice resource is not
immediately available.

• The irGetVCount(3IRAPI) function obtains the amount of time that voice
activity has taken place. The return value of irGetVCount(3IRAPI) is only
valid after an IRE_PLAY_DONE, IRE_PLAY_PROG or
IRE_RECORD_DONE event. Time is accumulated from the most recent
call to irEnd(3IRAPI), irPlayResume(3IRAPI), or irRecord(3IRAPI).

• The irStop(3IRAPI) function stops voice activity on a channel before
normal completion. Play is stopped when the application receives an
IRE_PLAY_DONE event.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 279

Voice Recording

The following functions are used to control voice recording.

• The irPhReserve(3IRAPI) function reserves space in a voice file for a
subsequent recording. The amount of space reserved is determined by
the voice coding algorithm used (that is, the value of the
IRP_RECORD_ALGO parameter) and the amount of time (in
milliseconds) passed to the function.

• The irRecord(3IRAPI) function records speech into a voice file descriptor
obtained from irOpen(3IRAPI).

• The irFRecord(3IRAPI) function records directly to a given voice file. It
opens the file passed to it, records the caller’s voice into the file, and
closes the file when recording terminates.

• The irBRecord(3IRAPI) function records directly into an internal buffer of
IRD_SPEECH_BUF_SIZE bytes. This function generates an
IRE_RECORD_BUF event to signal the application to process the
contents of the buffer before waiting for another event. The data in the
buffer is overwritten as each IRE_RECORD_BUF is received.

• The irRecordResume(3IRAPI) function resumes voice recording after it
has been stopped. The recording must have been initiated with the
“remember'' flag set in a call to irRecord(3IRAPI) or irFRecord(3IRAPI).

• The irStop(3IRAPI) function terminates recording. Recording is stopped
when the application receives an IRE_RECORD_DONE event.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 280

Telephony Support The IRAPI library includes several functions that support telephony
operations such as placing and receiving calls. These functions provide as
much consistency as possible across the different types of telephony
hardware. Unfortunately, not all telephony types are capable of supporting all
features, and IRAPI applications may behave slightly differently for some
telephony types.

The telephony functions allow applications to:

• Answer a call via irAnswer(3IRAPI). (The chantest sample application on
the system provides an example).

• Place an outbound call via irCall(3IRAPI).

• Flash the hook state of a channel via irFlash(3IRAPI).

• Outdial via irDial(3IRAPI). This is frequently done to pass data via dual
tone multi-frequency (DTMF) tones or to dial a number after flashing the
line.

• Disconnect a call via irDisconnect(3IRAPI). (The chantest sample
application on the system provides an example).

• Control speech energy detection via irStartSpeechED(3IRAPI),
irStopSpeechED(3IRAPI), and irCheckSpeechED(3IRAPI).

• Control Call Classification Analysis (CCA) via irStartCCA(3IRAPI),
irStopCCA(3IRAPI), and irCheckCCA(3IRAPI).

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 281

Telephony Service States

In addition to using the IRAPI library state to track the telephony activity
occurring on a channel, the IRAPI library tracks the service state of the
channel. irServiceState(3IRAPI) returns the current service state of the
channel. The possible service states include:

• IRD_INACTIVE — Idle or on-hook

• IRD_RINGING — Incoming call has been detected but not yet answered

• IRD_ACTIVE — Active or off-hook (channel is in use)

• IRD_CHAN_OOS — Out-of-service

• Special primary rate interface (PRI) and adjunct/switch application
interface (ASAI) states

The possible service states are described in the online instructions on the
system about irServiceState(3IRAPI). By properly handling events as they
occur, an application seldom needs to determine the library state or service
state for the channel it is controlling.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 282

Using irCall

An IRAPI application can place an outbound call by using irCall(3IRAPI).
Typically, an IRAPI application receives an IRE_EXTERNAL event
requesting it to place a call or it is irExec(3IRAPI)’ed or irSubProg(3IRAPI)’ed
when the application is to place a call. After the request to place a call has
been made, the IRAPI application must gain ownership of a channel via
irInit(3IRAPI) or irInitGroup(3IRAPI). Once the channel has been granted to
the IRAPI application, it then may place the call via irCall.

irCall supports multiple types of CCA to determine the disposition of an
outbound call. The type of CCA identified by the
IRP_OUTCALL_CCALEVEL is used automatically to determine the results of
the call attempt.

irCall uses the following library parameters to control the behavior of the call
attempt:

• IRP_RESOURCE_RETURNMODE — Determines blocking status on
CCA resource allocation

• IRP_OUTCALL_CCALEVEL — Determines the CCA level (blind,
intelligent, Full CCA)

• IRP_OUTCALL_ANSDET — Determines the type of answer detection to
be used when Full CCA is being used

• IRP_OUTCALL_DIALTYPE — Determines the outbound dial type

• IRP_OUTCALL_MAXRINGS — Determines the maximum number of
rings to be detected before returning an event indicating “no answer''

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 283

The completed call disposition is reported via an IRE_CALL_DONE event.
The event modifiers indicate the disposition (for example, answered, busy,
etc.). The IRE_CALL_DONE event indicates whether the call attempt via
irCall was successful. If the event modifiers indicate that the call was
successfully completed, the application proceeds to another activity on the
channel (for example, initiate playing of speech via irPlay).

A process must always call irDisconnect(3IRAPI), irDeinit(3IRAPI), or
irReturn(3IRAPI) if an IRE_CALL_DONE indicates an error or failure
occurred. In general, the IRAPI leaves the channel in the IRD_ACTIVE
service state even if the call attempt failed.

In addition to the IRE_CALL_DONE event, an application also may receive
one or more IRE_CALL_PROG events. This event reports intermediate
events before or after the IRAPI determines that the call attempt is complete.

Making chantest Support Outcalling
An IRAPI application placing outbound calls must know what channel to use,
what telephone number to call, and what parameter values to use (if not
using the defaults). There are many techniques available to initiate
outcalling. A transient IRAPI application that is designed to handle a single
channel might accept command line arguments such as the telephone
number to call. A permanent IRAPI application that is designed to handle
multiple channels may receive the equipment group (or specific channel),
phone number, and parameter values via an exec buffer or via an
IRE_EXTERNAL event. The example that follows uses the IRE_EXTERNAL
event to pass the equipment group, phone number, and parameter values.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 284

The code fragments that follow indicate changes to the chantest sample
application that allow the new chantest_oc application to initiate a call as well
as answer incoming calls. The complete code for the chantest_oc sample
application is available on the system in the file
/vs/examples/IRAPI/chantest_oc.c. Also, included on the system is the
mkcall sample application (in the file /vs/examples/IRAPI/mkcall.c) that
uses irPostEventQ to pass the IRE_EXTERNAL message to chantest_oc.

In this particular example, the mkcall program expects the user to provide the
equipment group number that should be used when initiating the call.
chantest_oc then uses any available channel in that equipment group to
initiate the call. It is a straightforward change to mkcall and chantest_oc to
pass either a specific channel number or an equipment group.

The following is the message structure for passing the data from the mkcall
transient process to the chantest_oc process. mkcall is a command line
program that accepts the data values as command line arguments and
passes them to chantest_oc via the following message structure.

struct CALLDATA {
 struct mbhdr header;
 int groupNo;
 int MaxRings;
 int CCAType;
 char Number[PH_NUM_LEN];
} *msgp;

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 285

The chantest_oc program must store the call request parameters for one or
more outbound call requests until the channels are granted for placing the
call. The following structure is used to store the requests.

struct PENDING_CALL {
 int pending_flag;
 struct CALLDATA call_request;
} pending_calls[MAX_PENDING];

The following shows new code that can be added to chantest to handle the
IRE_EXTERNAL event. Note that the index into the preceding array of
structures is used as the identifier for a specific request.

case IRE_EXTERNAL:
 /* Save the outcalling request data and soft seize a
 * channel from the specified equipment group. */
 msgp = (struct CALLDATA *) ev.event_text;
 for (i = 0; i < MAX_PENDING; i++) {
 if(pending_calls[i].pending_flag == IRD_FALSE) {

 pending_calls[i].pending_flag = IRD_TRUE;
 pending_calls[i].call_request = *msgp;
 (void) seizeGroup(i);
 break;
 }
 }
 break;

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 286

The seizeGroup() function initializes a channel and possibly starts the
application.

int seizeGroup(int req_idx) {

 struct CALLDATA *callReqP;
 int ret;
 channel_id cid;

 /* Attempt to become channel owner for a channel in the
equipment
 * group identified by the request. */
 callReqP = &pending_calls[req_idx].call_request;

 ret = irInitGroup(callReqP->groupNo, &cid, 10000, req_idx);

 if (ret == IRR_FAIL) {
 irPError("Error on irInitGroup");
 return(-1);
 }

 if(ret == IRR_OK) {
 if (setEvents(cid) < 0 || setTTParams(cid) < 0) {
 cleanup("Error setting events or parameters", cid);
 return(-1);
 }
 return(startOutcall(cid, req_idx));
 } else {

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 287

 return(0); /* Chan request is pending */
 }
}

In almost all cases, irInitGroup(3IRAPI) returns IRR_PENDING; therefore,
the application must wait for either IRE_CHAN_GRANT or
IRE_CHAN_DENY. Note that tag passed to irInitGroup is being used to
identify a specific request in the array of PENDING_CALL structures.

case IRE_CHAN_GRANT:
 if(setEvents(cid) < 0) {
 cleanup("Error on setEvents", cid);
 break;
 }
 if(setTTParams(cid) < 0) {
 cleanup ("Error on setTTParams", cid);
 break;
 }

 (void) startOutcall(cid, ev.tag);
 break;

case IRE_CHAN_DENY:
 (void) fprintf(stderr, "Denied ownership of channel");
 if (ev.tag >= 0 && ev.tag <= MAX_PENDING) {
 pending_calls[ev.tag].pending_flag = IRD_FALSE;
 }
 break;

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 288

The startOutcall() function initiates the outbound call via irCall(3IRAPI).

int startOutcall(channel_id cid, int req_idx)
{
 struct CALLDATA *callReqP;
 int chan = irCid2Chan(cid);

 if(req_idx < 0 || req_idx > MAX_PENDING) {
 cleanup ("Invalid call request index", cid);
 return (-1);
 }
 /* Set parameters for outcalling and call. */
 callReqP = &pending_calls[req_idx].call_request;

 if (irSetParam(cid, IRP_OUTCALL_DIALTYPE, IRD_DIALTYPE_TT)
== IRR_FAIL ||

 irSetParam(cid, IRP_OUTCALL_MAXRINGS, callReqP->MaxRings)
== IRR_FAIL ||

 irSetParam(cid, IRP_OUTCALL_CCALEVEL, callReqP->CCAType)
== IRR_FAIL ||

 irCall(cid, 1, callReqP->Number) == IRR_FAIL) {
 cleanup("Failure in startOutcall", cid);
 return(-1);
 }
 /* Release this pending_call entry */
 pending_calls[req_idx].pending_flag = IRD_FALSE;
return(0);
}

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 289

The IRE_CALL_DONE event indicates call disposition. The
IRE_CALL_PROG event may be used by some applications to follow call
progress.

 case IRE_CALL_DONE:
 switch (ev.event_mod1)
 {
 case IREM_RINGBACK:
 case IREM_ANSWER_SUP:
 case IREM_ANSWER:
 case IREM_BLIND:

startChanTst(cid);
break;

 case IREM_NOANSWER:
 case IREM_HIDRY:
 case IREM_REORDER:
 case IREM_BUSY:
 case IREM_TIMEOUT:
 case IREM_FAST_BUSY:
 case IREM_ERROR:
 default:

if (irDisconnect(cid, 0) < 0) {
 cleanup ("Error on irDisconnect", cid);

}
break;

 }
 break;

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 290

Using Call Classification Analysis

Call Classification Analysis (CCA) is typically started as needed when using
the irCall(3IRAPI) function. An IRAPI application must not explicitly start
CCA when initiating a call via irCall since that could interfere with the
automatic use of CCA.

There are some situations, such as dialing after flash transfers, where
application control of CCA is required. The irStartCCA(3IRAPI),
irStopCCA(3IRAPI) and irCheckCCA(3IRAPI) functions support flexible use
of CCA in those situations.

By default, irDial behaves as if simple CCA has been selected. IRAPI
applications may start Full CCA explicitly by setting the
IRP_OUTCALL_CCALEVEL parameter to IRD_FULL_CCA and then calling
irStartCCA(3IRAPI) to start Full CCA. Full CCA allows more accurate
detection of the disposition of the call made by a flash and dial. For accurate
transfer results, assign Full CCA only to an SSP circuit card (see Chapter 3,
“Configuration Management,” in Intuity CONVERSANT System Version 7.0
Administration, 585-313-501).

The following parameters affect CCA:

• IRP_OUTCALL_CCALEVEL — Determines the CCA level (blind,
intelligent, Full CCA); must be set to IRD_FULL_CCA to start Full CCA

• IRP_OUTCALL_ANSDET — Determines the type of answer detection
with Full CCA

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 291

• IRP_OUTCALL_MAXRINGS — Determines the maximum number of
rings to be generated before returning a “no answer'' disposition

The IRE_CALL_PROG event reports the tones and other events detected
after the irDial function has been called. The application must determine
whether the IRE_DIAL_DONE event or the IRE_CALL_PROG event
represents the final event (whether successful or not) resulting from the flash
and dial operation.

Timeslot
Management

This section describes the IRAPI functions that control the timeslots on the
TDM bus on the Intuity CONVERSANT system.

The TDM bus is used in the system to transfer speech data between E1, T1,
Tip/Ring (T/R), and SSP cards. There are 255 communication paths, called
timeslots, on the TDM bus. To transfer speech data between cards, an IRAPI
application must reserve a TDM timeslot. There are two timeslots pre-
allocated (or reserved) for each channel on the system. One of these
reserved timeslots is used by the channel to output the speech data it
receives from the network, while the other is reserved for inputting any
speech data sent by other cards across the network. The channel can have
up to 7 input timeslots, including the pre-allocated timeslot. Six timeslot
spaces remain to perform activities such as playing background speech, half-
bridging, or monitoring.

Applications start a background play request for a channel by using the
irStartBGPlay(3IRAPI) function with the speech file name to be used for the
background play. The file is continuously replayed until it is terminated by

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 292

irStopBGPlay(3IRAPI) or when the channel is released via irDeinit(3IRAPI) or
irReturn(3IRAPI). The global parameter IRP_BACKGROUND_OVOL sets
the background output volume system-wide. The
IRP_BACKGROUND_OVOL is a percentage relative to the channel’s OVOL
setting. The default value for IRP_BACKGROUND_OVOL is 33. The
channel parameter IRP_OUTPUT_BGGAIN applies a dB gain factor to the
background volume on a per channel basis. The default value is unity gain.

The irHBridge(3IRAPI) function implements half-bridging by adding another
channel’s input timeslot to the controlling channel’s output. In other words, if
channel A half-bridges to channel B, the customer on channel A hears what
is being said by the customer on channel B. The customer on channel B is
unaware that channel A has half-bridged to channel B. To perform a full-
bridge, channel B then must use irHBridge to half-bridge to channel A. Then,
the customer on channel A hears what the customer on channel B is saying
and vice-versa. The application must coordinate the two half-bridges to
perform a full-bridge.

A channel can listen to another channel’s input and output by using the
irMonitor(3IRAPI) function. The transmission of DTMF digits across the TDM
timeslots can be enabled or disabled by setting the IRP_DTMF_MUTING
parameter. See the online instructions on the system about
irPARAMETERS(4IRAPI) for a discussion on enabling and disabling the
IRP_DTMF_MUTING parameter.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 293

Both irHBridge(3IRAPI) and irMonitor(3IRAPI) take channels and cid’s as
arguments and determine what timeslots are involved based on what
channels are involved.

The IRAPI also provides the following functions that allow applications to
work on a timeslot basis:

• irTSAlloc(3IRAPI) — Allows timeslots to be allocated to a channel id

• irTSFree(IRAPI) — Allows timeslots to be freed from a channel id

• irTSEnd — Starts activity on a channel [similar to irEnd(3IRAPI)]. The
ordinary play functions (irFPlay(3IRAPI), etc.) are used to queue up a
play request. This function is only supported with play requests.

• irTSStop(3IRAPI) — Stops activity on a channel [similar to
irTSStop(3IRAPI)]. This function is only supported with play requests.

• irTSControl(3IRAPI) — Allows timeslots to be added to or removed from a
channel's output and also allows an application to set the gain control on
a particular timeslot

In the following example, the application allocates a timeslot, places the
timeslot in its output, queues speech files TS_PLAY_FILE1 and
TS_PLAY_FILE2, and then calls irTSEnd to play the queued speech on the
allocated timeslot. The IRE_TS_DONE event is used to indicate the end of a
timeslot activity. The event_text element of the event structure points to
another event structure containing an IRE_PLAY_DONE event.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 294

void start_ts_play(channel_id cid)
{
 int ts;/* Time slot */

 if ((ts = irTSAlloc(cid)) == IRR_FAIL
 || irTSControl(cid, ts, 0, IRD_ADD) == IRR_FAIL
 || irFPlay(cid, 0, TS_PLAY_FILE1) == IRR_FAIL
 || irFPlay(cid, 0, TS_PLAY_FILE2) == IRR_FAIL
 || irTSEnd(cid, 0, ts) == IRR_FAIL) {
 irDeinit(cid);
 return;
 }
}

Speech File Access The IRAPI provides the following facilities to support speech file access:

• Voice file operators — Access arbitrary sections of a voice file through a
voice file descriptor

• Algorithm detection — Determine the coding algorithm type of a voice
object. A voice object is a UnixWare file or a program memory buffer
containing speech data.

• Algorithm conversion — Convert voice objects from one coding type to
another

• Byte to time conversion and vice versa — Convert byte to time and time
to byte

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 295

• Talkfile phrases to UnixWare files — Convert talkfile phrase id pairs to
UnixWare file names and vice versa

Note: All voice objects are encoded with some algorithm type. The
IRAPI supports those algorithm types described in
IrALGORITHMS(4IRAPI). The terms coding type or encoding
type see the algorithm type.

Voice File Descriptors

Voice file descriptors are similar to UnixWare file descriptors. They are used
by IRAPI applications to position the voice file pointer to arbitrary points,
measured in milliseconds, and then play or record from those positions.

A voice file descriptor is allocated via irOpen(3IRAPI) and released via
irClose(3IRAPI). Once successfully opened, a voice file pointer may be re-
positioned with irLSeek(3IRAPI), played via irPlay(3IRAPI), or recorded via
irRecord(3IRAPI).

Unlike file descriptors, voice file descriptors are not positioned as data is
played from or recorded to them. The application must position the voice file
pointer. Since voice file pointers are positioned in milliseconds, the IRAPI
application is neither required to know the algorithm type nor to perform time
to byte conversions.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 296

After receiving IRE_PLAY_DONE (for single voice file descriptor plays) or
IRE_PLAY_DONE (for multiple voice object plays), a program could use
irGetVCount(3IRAPI) reset the voice pointer. The following example shows
how irGetVCount could be used to reposition the voice file descriptor after
play completes.

/* At some point in the program a vfd is played... */

irPlay(cid, tag, vfd, 10000);
 .
 .
 .
/* From the event processing routine ... */
while (irWCheck(&ev) != IRR_FAIL) {
 .
 .
 .

 case IRE_PLAY_DONE:

 /* Assume that the event was due to the vfd played above
 * reset voice file pointer to where play was stopped.

 */

 irLSeek(vfd, irGetVCount(cid), SEEK_CUR);

 .

 .

 .

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 297

The irVfd2FD(3IRAPI) function returns a file descriptor with the voice file
pointer set to the byte count equivalent of the given voice file pointer. This file
pointer is positioned in milliseconds.

Voice File Positioning and Speech Headers

The voice system uses speech headers to indicate the algorithm type of a
voice object. Speech headers are four bytes in length and occur every 400
bytes. The irLSeek(3IRAPI) function and the count argument to the
irPlay(3IRAPI) function do not account for speech file headers, so exact time
positioning of the voice file pointer or play duration is not guaranteed.

The voice file headers may also pose a problem when playing from arbitrary
points of a voice file if the sequence of speech objects are not all encoded
with the same algorithm. This is due to the way the voice cards play speech.
A voice card receives a stream of speech data from the system. When a
speech header is encountered, it sets its signal processors to decode with a
certain processor algorithm. A stream of data composed of many speech
objects encoded in a variety of algorithms works if each unique speech object
contains a speech header at the beginning of the file. Playing from a voice
file descriptor position to some arbitrary point within the voice file can cause
garbled speech if the first four bytes do not represent a speech header and if
this speech is preceded by a voice object encoded with a different algorithm.
To avoid this problem, you can prepend all arbitrarily positioned voice plays
with a speech header using irBPlay(3IRAPI). The following example
illustrates this technique.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 298

In this example, the array of unsigned shorts is set to contain the byte
sequence 0xff, 0xaa, 0x<code_type>. The algorithm type of the voice file
associated with a voice file descriptor is obtained via a call to
irGetAlgorithm(3IRAPI), The byte sequence 0xff, 0xaa instructs the voice
card that the subsequent byte is the algorithm in which the subsequent
speech is encoded. The call to irBPlay guarantees that the voice data played
from voice file descriptor vfd is prepended with a speech header of the proper
type, thereby allowing the passing data to the voice card of a different
algorithm than that currently being decoded by the voice card.

Note: This technique might degrade performance on large channel
count systems since, internally, an entire speech block and
speech file is allocated for the buffer play (that is, each buffer play
acts like a unique file play). You may want to play a speech file
created at installation time that contains only the header. In this
case, the file is shared across channels and is likely to be cached
in the speech buffer cache.

int play_vfd_with_head(channel_id cid, vf_descriptor vfd, int
count)
{
 unsigned short header[2];

 header[0] = 0xffaa;
 header[1] = ((unsigned short) irGetAlgorithm(vfd)) & 0xff;

 if (irBPlay(cid, tag, header, 4) == IRR_FAIL ||

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 299

 irPlay(cid, tag, vfd, count) == IRR_FAIL) {
 return(IRR_FAIL);
 }
 return(IRR_OK);
}

Note: A voice file coded with the IRA_CELP16 code style requires an
SSP circuit card, and cannot be played on an IVP Tip/Ring circuit
card. CELP16 coding is available on the newer IVC6 and NGTR
Tip/Ring circuit cards.

Algorithm Detection

The irGetAlgorithm(3IRAPI) function returns the algorithm type of the voice
file associated with a voice file descriptor (see the example undert Voice File
Positioning and Speech Headers on page 297). Algorithm detection
functions also exist to determine the encoding type of a voice file given a
UnixWare path name [irFGetAlgorithm(3IRAPI)], or a buffer
[irBGetAlgorithm(3IRAPI)]. The command line utility codetype(1) may be
used to determine the coding type for a voice file.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 300

Algorithm Conversion

The following functions support the conversion of voice objects from one
algorithm type to another:

• irConvertAlgorithm(3IRAPI) — Convert the algorithm from one voice file
descriptor to another. This function supports conversion of a block
specified from an arbitrary position of arbitrary length.

• irFConvertAlgorithm(3IRAPI) — Convert the algorithm from one voice file
into another

• irBConvertAlgorithm(3IRAPI) — Convert the algorithm from one program
buffer to another. The application developer must size the target buffer to
accommodate speech headers.

Voice buffer conversion functions are unique in that they are asynchronous
but are not associated with a channel. This allows for two things:

1 Using these functions in processes not owning channels such as
command line utilities

2 Using these functions in processes owning channels without requiring
those processes to block on the conversion (due to their asynchronous
nature)

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 301

They are also unique in that they are expensive to compute. The conv
process performs the computations on behalf of the IRAPI process on the
main CPU. For this reason, these functions are best limited to utility
processes. Voice response transactions should not use conversion routines
in real time.

Byte and Time Conversions

The irByte2Time(3IRAPI) and irTime2Byte(3IRAPI) functions convert byte
counts to milliseconds and milliseconds to byte counts given some algorithm.

Note: These functions do not account for speech headers.

Talkfile/phrase_id Mapping

The irTF2File(3IRAPI) and irFile2TF(3IRAPI) functions provide a mapping to
and from old talkfile/phrase_id numbers and UnixWare file names. Mapping
depends on the IRP_SPEECHDIR global parameter setting. Assuming
IRP_SPEECHDIR is set to /home2/vfs/talkfiles, the talkfile/phrase_id pair
(100,200) is mapped to the UnixWare file name
/home2/vfs/talkfiles/100/200 via irTF2File. Assuming IRP_SPEECHDIR as
above, the filename /home2/vfs/talkfiles/100/200 is mapped to the
talkfile/phrase_id pair (100,200) via irFile2TF. If an existing application has
speech stored according to talkfile/phrase_id pairs, irFPlay(3IRAPI) and
irTF2File may be used together as follows.

if (irFPlay(cid, 0, irTF2File(talkfile, phrase_id)) ==
IRR_FAIL) {

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 302

Speech-Oriented Commands

The Intuity CONVERSANT system stores speech in standard UnixWare files.
This allows the use of standard UnixWare commands to manage speech
data.

Prior to the Intuity CONVERSANT System Version 5.0, speech data was
stored in a raw slice. Access to the raw slice was provided through a set of
utility functions. While many of these utilities are directly replaceable with
UnixWare commands, most are still supported for the following reasons:

1 Backward compatibility with old administrative procedures

2 Access to speech data using the talkfile/phrase_id schema

3 Maintenance of voice system specific functionality not present in the
standard UnixWare commands. For example, the list command reports
the time duration, coding type and phrase name of each file.

The Intuity CONVERSANT system voice file system commands, the
UnixWare equivalents, their status, and a brief description of the command’s
function are shown in Table 20 on page 303. For additional information on
the voice commands, see Appendix A, “Summary of Commands,” in Intuity
CONVERSANT System Version 7.0 Administration, 585-313-501. For
additional information on the UnixWare commands, see the UnixWare
Command Reference.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 303

The voice file specific commands use the IRP_SPEECHDIR global
parameter to determine the locations of the relevant voice files.

Table 20. Voice File System Commands

Voice
Command

Status Description UnixWare
Analogue

vdf supported Find used/usable space in
filesystem

df

copy supported Copy speech phrases cp, cpio

audit obsolete Audit a filesystem fsck

buildfs obsolete Build a raw slice speech
filesystem

mkfs

addhdr supported Add voice or code header to a
speech file

-

list supported List phrases in a speech slice ls

erase supported Remove (erase) speech phrases rm

add supported Add speech to a filesystem cp, cpio

spsav supported Save speech to a tape -

spres supported Restore speech from a tape -

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 304

Dial Pulse and
Speech
Recognition

Dial pulse and speech recognition provide caller input to an application. Like
touch-tone input, recognition applications use the input queue to retrieve
recognized data. The IRE_INPUT_DONE event indicates when something
has been recognized or the recognition timed out. A separate recognition
timer is available to support timeout on input.

Dial pulse and speech recognition differ from touch-tone input in that the
application must start the recognizer each time input is to be collected from
the caller. Also, after receiving IRE_INPUT_DONE, the recognizer is
automatically turned off; the recognition request has been completed.

WholeWord speech recognition works closely with echo cancellation to
support barge-in or recognition during prompting. Indeed, recognition during
prompting is not possible unless echo cancellation is used.

This section first introduces the functions, parameters and header files used
with speech recognition. Then, the chantest application shows the use of
speech recognition with echo cancellation to support barge-in. This modified
version of chantest stills supports input via touch tones and automatically
turns off the recognizer when touch-tone data is received.

See Intuity CONVERSANT System Version 7.0 Speech Development,
Processing, and Recognition, 585-313-201, for additional information about
speech recognition. See the maintenance book for your platform for
information on the software packages that must be installed to support dial
pulse and speech recognition (Dial Pulse Recognition (DPR), WholeWord
speech recognition, and FlexWord speech recognition).

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 305

Recognition Functions

The following functions are provided to support dial pulse and speech
recognition:

• irInitRecog(3IRAPI)

~ Initialize recognition parameters per IRP_RECOG_TYPE

• irInitRecog2(3IRAPI)

~ Initialize recognition parameters per recog_type

• irInitAllRecog(3IRAPI)

~ Initialize parameters for all recognizers available

• irStartRecog(3IRAPI)

~ Start recognition per IRP_RECOG_TYPE and
IRP_RECOG_GRAMMAR

• irStartRecog2(3IRAPI)

~ Start recognition per recog_type and recog_grammar

• irStopRecog(3IRAPI)

~ Stop recognition per IRP_RECOG_TYPE

• irStopRecog2(3IRAPI)

~ Stop recognition per recog_type

• irStopAllRecog(3IRAPI)

~ Stop all started recognizers

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 306

• irCheckRecog(3IRAPI)

~ Check the on/off status of recognition per IRP_RECOG_TYPE

• irCheckRecog2(3IRAPI)

~ Check the on/off status of recognition per recog_type

• irStartRecogTimer(3IRAPI)

~ Start the recognition timer per IRP_RECOG_TYPE

• irStartRecogTimer2(3IRAPI)

~ Start the recognition timer per recog_type

• irStartEcho(3IRAPI)

~ Start echo cancellation

• irStopEcho(3IRAPI)

~ Stop echo cancellation

• irCheckEcho(3IRAPI)

~ Check the on/off status of echo cancellation

The input queue functions are also used to get and flush recognition data
from the input queue. These include irGetInput(3IRAPI) and
irFlushInput(3IRAPI) respectively. See the online instructions on the system
for additional information about these functions.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 307

Recognition Parameters

The following parameters are used to control the behavior of the recognition
functions:

• IRP_RECOG_TYPE — Indicates which type of recognition to use
(IRD_DIALPULSE, IRD_WHOLE_WORD, or IRD_FLEX_WORD)

• IRP_RECOG_GRAMMAR — Depends on IRP_RECOG_TYPE, valid
values are found with the grammar header files associated with the
recognition type

• IRP_RECOG_PRETIME — Specifies a timeout to wait for caller input,
measured in milliseconds

• IRP_RECOG_INTERTIME — Specifies a timeout to wait for caller input
between digits, measured in milliseconds (applies only to touch tone
(DTMF) and dial pulse recognition)

• IRP_ECHOCAN_TYPE — Currently only one supported type
IRD_SP_ECHO

Note: It is best to leave the IRP_ECHOCAN_TYPE parameter alone.
Changing it renders the echo canceler inoperable.

All recognition parameters should be set before calling any recognition
functions and retain those settings until the functions complete.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 308

Dial Pulse Recognition (DPR), WholeWord speech recognition, and
FlexWord speech recognition work similarly from the perspective of the
IRAPI. Once the recognition type and grammar is set, the function calls
proceed in similar ways. The primary difference between the types of
recognition is that barge-in is not supported with DPR or FlexWord
recognition. However, the IRAPI does not prevent you from attempting to use
the echo canceler or recognize during prompting with DPR or FlexWord
recognition; however, this results in premature responses from the recognizer
with nonsense values. A similar situation arises when using the WholeWord
recognizer during prompting without echo cancellation.

Grammar Header Files

Dial Pulse Recognition

Dial Pulse Recognition grammars are defined in the header file:

/att/asr/grammar_hs/dpr.gram.h

There is one Dial Pulse grammar file for all countries. Applications using Dial
Pulse Recognition would include the grammar header file into their programs
as follows:

#include "/att/asr/grammar_hs/dpr.gram.h"

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 309

WholeWord Recognition

WholeWord recognition grammar numbers are defined in header files. Each
WholeWord recognition language has a specific header file named according
to the following template:

/att/asr/grammar_hs/{XX}.gram.h

where {XX} is the country specific designation. For US English, {XX} is US.
Applications using US English WholeWord speech recognition would include
the grammar header file into their programs as follows:

#include "/att/asr/grammar_hs/US.gram.h"

FlexWord Recognition

All FlexWord recognitions use grammars defined in the
/att/asr/grammar_hs/sw_grammar.h file. The grammars in this file are
defined to have the 12th bit set. This flag, meaningful to TAS applications
only, indicates to TSM that FlexWord is to be used. It should be removed
before setting the grammar. The actual FlexWord grammar number is the
defined value with the 12th bit reset. Therefore, IRAPI applications using
FlexWord recognition must reset the 12th bit before starting the FlexWord
recognizer. This is easily accomplished when setting the
IRP_RECOG_GRAMMAR as follows:

irSetParam(cid, IRD_RECOG_GRAMMAR, WL_0 - 2048);

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 310

Recognition Events

Speech recognition uses only the IRE_INPUT_DONE event for the following
reasons:

1 Recognition input is delivered from the voice cards atomically.

2 When recognition completes, it is done; there is no more input from the
recognizer until it is restarted.

Note: The IRE_INPUT event is never used.

This differs from touch-tone input where touch tones arrive from the voice
cards one at a time and touch tones are continuously being recognized by
those cards.

With touch-tone input, the IRE_INPUT_DONE event is generated when
conditions on the input queue are met or the touch-tone timer expires. With
speech recognition input, IRE_INPUT_DONE is generated regardless of the
conditions on the input queue. The input length or delineators settings do not
effect the generation of the IRE_INPUT_DONE event in this case.

Dial Pulse Recognition (DPR) uses IRE_INPUT_DONE similarly to speech
recognition. DPR also uses the IRE_RECOGNIZING event. This event is
reported by DPR as soon as it detects dial pulse input. This event can be
used to turn off other simultaneously running recognizers. The
IRE_RECOGNIZING event is not presently available for speech recognition.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 311

Echo Cancellation

Echo cancellation provides better speech recognition accuracy when
attempting to recognize while prompting. Echo cancellation removes the
echo produced while the prompt is being played from the caller input.
Without echo cancellation, the recognizer performs poorly as it cannot
distinguish the caller’s input from the prompt’s echo.

Echo cancellation uses an adaptive algorithm; therefore, the longer it is on,
the better job it does. Applications requiring echo cancellation should turn on
echo cancellation once the call is answered and leave it on until recognition
during prompting is no longer required by the application.

In order to use echo cancellation, all voice output must be played on a SSP
card. This is only relevant for Tip/Ring channels set to talk (that is, voice
output is played on the Tip/Ring circuit card rather than an SSP circuit card).
If any such channels exist, the IRAPI automatically switches the channels to
tdm (meaning voice output is played on an SSP circuit card). Talk and tdm
correspond to IRP_VOICE_TYPE settings of IRD_TALK_VOICE and
IRD_SP_VOICE respectively. When using echo cancellation, the VOICE
service must be assigned to an SSP card in the system. See Chapter 3,
“Configuration Management,” in Intuity CONVERSANT System Version 7.0
Administration, 585-313-501, to assign service to an SSP circuit card.

Since echo cancellation performance improves over time, it remains on
across irExec(3IRAPI) and irSubProg(3IRAPI) boundaries.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 312

irExec(3IRAPI)’ed applications can use irCheckEcho(3IRAPI) to determine
the status of the echo canceler.

Echo cancellation is automatically stopped when irDeinit(3IRAPI) or
irReturn(3IRAPI) is called.

In general, applications that use echo cancellation consume more SSP
resources than recognition applications that do not. Reasons include:

• The echo canceler must remain on, possibly for the entire application.

• The recognizer remains on for both the prompt and possibly for some
time after the prompt completes.

Chantest Using Speech Recognition

This section shows how chantest uses speech recognition to get caller input.
This modified chantest application allows recognition during prompting,
thereby requiring echo cancellation. The caller enters touch tones to indicate
that input will be touch tone rather than speech. After receiving the touch-
tone input, the program turns off the recognizer. The entire chantest_arc.c
application is available on the system in the file
/vs/examples/IRAPI/chantest_arc.c.

chantest_asr.c must include the asr grammar header file.

#include "/att/asr/grammar_hs/US.gram.h"

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 313

setTTParams() must include setting of the recognition parameters.

int setTTParmas(channel_id cid)

{ .

 .

 .

 irSetParam(cid, IRP_TT_INTERTIME, 5000) == IRR_FAIL ||

 irSetParam(cid, IRP_RECOG_PRETIME, 5000) == IRR_FAIL ||

 irSetParam(cid, IRP_RECOG_TYPE, IRD_WHOLE_WORD) ==

IRR_FAIL ||

 irSetParam(cid, IRP_RECOG_GRAMMAR, US_4dig) == IRR_FAIL ||

 irSetParamStr(cid, IRP_INPUT_DELIM1, "#") == IRR_FAIL) {

 return(-1);

 .

 .

 .

IRP_RECOG_GRAMMAR is set to US_4dig as defined in the header file
included above. This grammar indicates that we are expecting to recognize
exactly 4 spoken digits.

In general, the longer the echo canceler runs, the better job it does at
canceling the echo from the output voice. chantest starts echo cancellation
once the call is answered, allowing the echo canceler to run as long as
possible before the caller is prompted. Starting the echo canceler is done
asynchronously, the IRE_ECHO_START event is reported when starting the

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 314

echo canceler completes. If successful, the chantest application continues
by calling startChanTst().

 case IRE_ANSWER_DONE:
 if (ev.event_mod1 != IREM_COMPLETE) {

cleanup("Error on irAnswer", cid);

break;

 }

 if (irStartEcho(cid, 0) == IRR_FAIL) {

 cleanup("Error in irStartEcho", cid);

 break;

 }

 break;

 case IRE_ECHO_START:

 if (ev.event_mod1 == IREM_ERROR) {

 cleanup("IRE_ECHO_START reports IREM_ERROR",

cid);

 break;

 }

 startChanTst(cid);

 break;

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 315

Since chantest supports recognition during prompting, the recognizer must
be started before the prompt is played. Prompts are queued and played from
the reprompt() and playInstr() functions. Both of these functions are modified
as follows:

void reprompt(channel_id cid)
{
 .
 .
 .
 if (irStartRecog(cid,0) == IRR_FAIL) {
 cleanup("irStartRecog Error", cid);
 return;
 }
 if (irEnd(cid, 0, 0) == IRR_FAIL) {
 .
 .
 .
}

void playInstr(channel_id cid)
{
 .
 .
 .
 if (irStartRecog(cid,0) == IRR_FAIL) {
 cleanup("irStartRecog Error", cid);
 return;

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 316

 }
 if (irEnd(cid, 0, 0) == IRR_FAIL) {
 .
 .
 .
}

Starting the recognizer before calling irEnd() allows the application to ensure
that the recognizer is on before the prompt is played. If an attempt to start the
recognizer is made after the call to irEnd() and the recognizer failed to start,
the application prompts the user for input that it is not prepared to receive.

If the prompt completes before the recognition completes, the recognition
timer is started. The call to irStartRecogTimer(3IRAPI) tells the recognizer
that the prompt is complete and the recognition timeout, specified through the
IRP_RECOG_PRETIME, now takes effect. From within the main while loop,
the IRE_PLAY_DONE event for prompting is handled as follows:

case IRE_PLAY_DONE:
 switch(Chl[chan].PlayDone) {
 case REPROMPT_WHEN_DONE:
 reprompt(cid);
 break;
 case START_TIMER_WHEN_DONE:
 if (irCheckRecog(cid) == IRD_ON &&
 irStartRecogTimer(cid) == IRR_FAIL) {
 cleanup("irStartRecogTimer Failed", cid);
 }

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 317

 break;
 .
 .
 .

As stated earlier, if the caller enters a touch tone, the application must switch
from using recognition to using touch-tone input. Again from within the main
while loop, receiving the IRE_INPUT event that only occurs for touch-tone
input causes chantest to stop recognition (if on) and start the touch-tone
timer.

IRE_INPUT:
 if (irCheckRecog(cid) == IRR_ON) {
 (void) irStopRecog(cid);
 if (irStartTTTimer(cid) == IRR_FAIL) {
 cleanup("Can’t start TT Timer", cid);
 }
 }
 break;

The IRE_INPUT_DONE event occurs when input has been received from the
recognizer. The input_done() function now must handle recognition input
while still supporting touch-tone input.

void input_done(channel_id cid, ir_event_t *evPtr)
{
 switch(evPtr->event_mod1) {
 case IREM_INPUT_LENGTH:
 case IREM_INPUT_DELIM:

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 318

 case IREM_RECOG:
 Chl[chan].RetryCount = 0;
 play_tt(cid);
 break;
 case IREM_TT_PRE:
 case IREM_TT_INTER:
 case IREM_RECOG_PRE:
 if(Chl[chan].RetryCount++ >= 3) {

If IRE_INPUT_DONE reports input, the input is played back to the user via
play_tt(). Otherwise, the retry count is increased and the script reprompts or
quits as was done in the original chantest.

Resource
Management

Resources are processing elements used to provide some voice, telephony,
or call processing service. Voice system resources fall under two categories:

• Static resources

These resources are always bound to a particular channel. These
include touch-tone detectors, dialers, and play and record resources on
Tip/Ring channels set to talk. These resources simply are used as they
are needed since they are always available.

• Dynamic resources

These resources exist in a pool from which resources are allocated as
needed. Dynamic resources exist on SSP cards. Examples of dynamic
resources include voice play and record resources on SSP circuit cards

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 319

and recognition resources. Since there may be fewer dynamic resources
of a particular type than channels wishing to use them at any given time,
IRAPI applications must deal with dynamic resource allocation
contention.

Note: Application developers need not be concerned about static
resources. This section looks only at dynamic resource allocation
and its effects on program behavior and structure. From this point
forward, all discussion of resources refers to dynamic resources.

The IRAPI allocates all resources required to start an activity when the
function requesting the activity is called. Implicit resource allocation is when
resources required to complete a function or activity are allocated when a
function is called. The IRAPI also allows an application to reserve any
resources it may need in advance through a call to
irReserveResource(3IRAPI). This is termed explicit resource allocation.

Implicit Resource Allocation

Resources required to complete a function or activity are allocated implicitly
when the function is called, if licensed resources are available. Resources
are licensed on a specified number of channels for each feature. The
following functions implicitly allocate resources:

• irStartEcho(3IRAPI) — Allocates echo cancellation resources

• irStartRecog(3IRAPI) — Allocates recognition resources

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 320

• irEnd(3IRAPI) — Allocates SSP play or TTS resources depending on
whether play or say requests have been queued

• irRecord(3IRAPI) — Allocates SSP record resources

• irCall(3IRAPI) — Allocates CCA resources if IRP_OUTCALL_CCALEVEL
is set to IRD_FULL_CCA

• irStartCCA(3IRAPI) — Allocates CCA resources if
IRP_OUTCALL_CCALEVEL is set to IRD_FULL_CCA

Resources are allocated when the function is called and freed when the
activity completes, as indicated through an event.

The IRP_RESOURCE_RETURNMODE parameter determines the behavior
of the IRAPI when all licensed resources are busy during resource allocation.
The following are valid settings for IRP_RESOURCE_RETURNMODE and
the result of resource allocation failure if all resources of the requested type
are busy:

• IRD_IMMEDIATE — Return IRR_FAIL

• IRD_BLOCKFOREVER — Return IRR_PENDING and wait indefinitely
for IRE_GRANT

• N (where N is a timeout in milliseconds) — Return IRR_PENDING and
wait up to N msec for IRE_GRANT, IRE_DENY, or corresponding
IRE_<activity>_DONE event with an IREM_DENY modifier. See the
online instructions on the system for a complete description of the
possible events associated with any function returning IRR_PENDING.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 321

When a function returns IRR_PENDING, the IRAPI generates the
IRE_GRANT event when the resource is granted. At that point no action is
required from the application. The IRE_GRANT simply informs the
application that the activity is now proceeding. If
IRP_RESOURCE_RETURNMODE was set to some positive number and
resources were not granted within the timeout represented by that number,
the IRE_DENY event or the function specific IRE_<activity>_DONE event
with the IREM_DENY modifier is generated. At that point, an application
might perform some error processing under the assumption that resources
will never become available.

Application developers must decide which resource return mode works best
for their application. One setting may not be appropriate for all resource
allocations. IRP_RESOURCE_RETURNMODE may be modified before
each function call if an application is willing to wait for some resources but not
for others. The following describes possible settings of
IRP_RESOURCE_RETURNMODE based on application needs:

• IRD_IMMEDIATE

If licensed resources for a feature are not available, the function call fails
and the application proceeds with its normal error processing at that
point. However, IRD_IMMEDIATE may force applications to fail requests
that may have been blocked only for a short period of time. An
application that only occasionally encounters resource contention may
drop calls unnecessarily. A simple application might use this value.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 322

• IRD_BLOCKFOREVER

Using IRD_BLOCKFOREVER may leave callers waiting around too long
rather than dropping callers too quickly (as with IRD_IMMEDIATE).

• A timeout value reasonable for the application

Specifying a reasonable time value is perhaps the best method for an
application. It allows an application to incur some delays under fairly
heavy loads and to take alternate action under extreme loads. The
application must be able to effectively deal with delayed resource denial.

Allocation of channels via irInit(3IRAPI) and irInitGroup(3IRAPI) follows the
same resource allocation strategy. Setting the return_mode argument to
these functions determines their behavior with respect to delayed channel
allocation. With channel allocation, however, the IRE_CHAN_GRANT and
IRE_CHAN_DENY events are used to indicate a channel grant and deny
respectively.

Delayed Resource Allocation Example

The speech recognition version of chantest provides a good example for
showing the behavior of implicit resource allocation for the following reasons:

• It uses play, recognition, and echo cancellation resources.

• The play and recognition resource allocations are interrelated. That is,
the play cannot start until recognition starts, meaning that the
IRE_GRANT event triggers the prompt.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 323

To make chantest support delayed resource allocation,
IRP_RESOURCE_RETURNMODE must be set. After the channel is
successfully initialized, from within the IRE_EXEC case of the main while
loop, the parameter is set as follows:

if (irSetParam(cid, IRP_RESOURCE_RETURNMODE,
 DELAYED_GRANT_TIMEOUT) == IRR_FAIL) {
 cleanup ("Error on irSetParam", cid);
 break;
}

DELAYED_GRANT_TIMEOUT is defined elsewhere as 10000 milliseconds:

#define DELAYED_GRANT_TIMEOUT 10000

If speech recognition cannot be started due to insufficient resource (return
code of IRR_PENDING), the play is not started, chantest waits for the
IRE_GRANT event before play is started. Recognition is started in the
functions playInstr() and reprompt(). Both functions are updated as follows.

void playInstr(channel_id cid)
{
 .
 .
 .
 int ret;
 .
 .
 .

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 324

 ret = irStartRecog(cid,0);
 if (ret == IRR_FAIL) {
 cleanup("irStartRecog Error", cid);
 return;
 } else if (ret == IRR_PENDING) {
 return;
 }
 .
 .
 .
}

Finally, event handling code must be added for IRE_GRANT and IRE_DENY,
and IRE_ECHO_START must deal with the IREM_DENY modifier.

while (irWCheck(&ev) != IRR_FAIL) {
 .
 .
 .
 switch (ev.event_id) {
 .
 .
 .
 case IRE_ECHO_START:
 if (ev.event_mod1 == IREM_ERROR || ev.event_mod1 ==
IREM_DENY) {
 cleanup("IRE_ECHO_START reports
IREM_ERROR/IREM_DENY", cid);

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 325

 break;
 }
 .
 .
 .

 case IRE_GRANT:
 if (irLibState(cid) == IRS_PLAY_QUEUED) {
 /* Recognition resources were delayed, start play now
*/
 if (irEnd(cid, 0, 0) == IRR_FAIL) {
 cleanup("Error on irEnd", cid);
 }
 }
 break;

 case IRE_DENY:
 /* Recognition resources denied. Note: echo
cancellation and
 * play resource allocation is indicated through an
 * an IRE_ECHO_START and IRE_PLAY_DONE event with an
IREM_DENY
 * event respectively. */
 cleanup("Resources for recognition denied.",cid);
 break;

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 326

 .
 .
 .
 }
}

If the IRE_GRANT is due to play or echo cancellation, it is ignored and the
program continues as normal. If echo cancellation resources are denied, the
program drops the call. The program ignores play failures for any reason and
simply continues, most likely attempting to reprompt.

Explicit Resource Allocation

Explicit resource allocation allows applications to reserve all the licensed
resources they are going to need, on a per channel basis, before they
actually use them. By allocating resources in advance, applications can
guarantee that the resources are available immediately at the time they are
needed. Unfortunately, the allocated resources not being used cannot be
used by any other application. Resource allocation is done through
irReserveResource(3IRAPI). Resources are reserved according to capability
and implementation. Capabilities, defined in IrRESOURCES(4IRAPI), are
essentially the services provided by the resources. Current capabilities
include:

• IRC_CCA — Call classification

• IRC_ECHOCAN — Echo cancellation

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 327

• IRC_RECOG — Input recognition

• IRC_PLAY — Voice play

• IRC_RECORD — Voice record

• IRC_TTS — TTS

For each capability there are one or more implementations. Currently
supported implementations of each capability are listed in
IrRESOURCES(4IRAPI). Applications can reserve resources without
knowing which implementation they need by requesting the resource with
implementation IRD_INVALID. This causes irReserveResource(3IRAPI) to
reserve the default resource implementation. When resolving the default
resource, irReserveResource(3IRAPI) consults the parameter switch
associated with that capability. These parameter switches and the
capabilities with which they are associated are also listed in
IrRESOURCES(4IRAPI). For example, IRC_PLAY is associated with
IRP_VOICE_TYPE. If irReserveResource(3IRAPI) is called with capability
IRC_PLAY and the implementation is set to IRD_INVALID, the play
implementation resources associated with the setting of IRP_VOICE_TYPE
are reserved. If IRP_VOICE_TYPE is set to IRD_SP_VOICE, an SSP play
resource is allocated. If IRP_VOICE_TYPE is set to IRD_TALK_VOICE, no
resources are allocated since IRD_TALK_VOICE implies a static play
resource bound to the channel.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 328

The following example shows how resources could be pre-allocated for the
speech recognition chantest program. Explicitly reserved resources are
freed via a call to irFreeResource(3IRAPI) or irDeinit(3IRAPI). Explicit
resource allocations survive across irExec(3IRAPI) and irSubProg(3IRAPI)
boundaries.

main()
{
 .
 .
 .
 static ir_reserve_t resourceRequest[] = {
 { IRC_PLAY, IRD_SP_VOICE },
 { IRC_ECHOCAN, IRD_SP_ECHO },
 { IRC_RECOG, IRD_WHOLE_WORD },
 { IRC_NULL, IRD_INVALID },
 };
 .
 .
 .
 while (irWCheck(&ev) != IRR_FAIL) {
 .
 .
 .
 switch (ev.event_id) {

 case IRE_EXEC:
 .

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 329

 .
 .
 /* After successful channel initialization */

 if (irReserveResource(cid, 0, resourceRequest,
IRD_IMMEDIATE,
 NULL) == IRR_FAIL) {
 cleanup("Explicit Resource Allocation failure",
cid);
 break;
 }
 .
 .
 .
 }
 }

When to Use Explicit Resource Allocation

Explicit resource allocation should be used sparingly if at all. Explicit
resource allocation causes all resources a channel requests to be bound to
that channel regardless of whether the channel is actually using them.
Consider a application where TTS is used only to speak out the results of a
database lookup. The application is run on a 48 channel system with two
TTS SSP cards and 1 VOICE SSP card. All other speech is recorded
speech. If this application reserved TTS resources when it started, at most
12 channels could run simultaneously. Furthermore, the TTS resources are

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 330

highly under utilized since the TTS resource is only used to speak out the
results of the database lookup. The remainder of the call hold time is spent
playing prompts and collecting touch-tone input. Therefore, this application is
actually best served by using delayed implicit resource allocation.

Explicit resource allocation is best suited for systems running a mix of
applications. A voice messaging system makes a fine example. There are
two types of callers in a messaging system: those leaving messages and
those retrieving messages. Assume that those leaving messages are of
higher priority since they are leaving messages about purchases they want to
make. These messages are recorded using the IRAPI voice record
functions. To be sure to minimize record setup times, so as not to confuse
the caller with long delays, such an application should request record
resources up front, thereby allowing access to these resources, when they
are needed, regardless of load. The application may also reserve play
resources as well to insure the highest level of service quality. The retrieving
application does not reserve resources up front since the users (the message
transcribers) are more willing to put up with small delays when retrieving
messages.

Explicit resource allocation allows for a system level implementation of quality
of service.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 331

Other Resource Management Functions

Resources available on the system may be found by calling
irQueryResource(3IRAPI). This function returns a list of resources matching
the query including a list of all cards that support the resource or function.

irRestrictResource(3IRAPI) allows an application to restrict itself to a set of
resources. Only processes running as root may change resource
restrictions. Resource restrictions survive across irExec(3IRAPI) and
irSubProg(3IRAPI) boundaries.

Resource Management Strategies

As discussed earlier, resources are allocated to channels, either explicitly or
implicitly, to serve the needs of the program. The Resource Manager (RM)
driver is used to control access of resources across all processes attempting
to use them.

Resources are described to RM when the system initializes or when SSP
cards are put into service. The usage vector, described in the following
section, describes the load the resource usage imposes on the SSP card.

RM uses an algorithm whereby the least functional, lightest loaded SSP card
is selected. For example, if a system contains 2 SSPs, one supporting voice
record and play and the other supporting voice record and play, recognition
and echo cancellation, and play resources are requested, RM selects from
the SSP supporting only record and play first since it is least functional.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 332

When a card is gracefully taken out of service by a maintenance process, all
current allocations are maintained but no new allocations are allowed. This
allows allocations to be released from a card until the card is idle, at which
time it is released to the maintenance process.

If a maintenance process forcibly removes a card from service, any current
activities on the card are terminated. Any activities terminated in this way
receive an IRE_<activity>_DONE event with the modifiers of IREM_ERROR
and IRER_RESOURCE_REMOVED. For each resource explicitly allocated
by a channel on the affected card, an IRE_RESOURCE_REMOVED event is
generated by the IRAPI, informing the application of the resource removal.

Using rmdb to Assess Resource Utilization

The command line utility, rmdb(1) can be used to assess resource utilization
and channel status.

The -C option of rmdb dumps the contents of the channel table maintained
by the RM driver. Use rmdb -C48,51 from the command line to show a dump
of channels 48 and 51. The “Allocated List'' and “Pending List'' columns are
of particular importance to resource allocation. This example shows that
channel 48 is pending on a play resource while channel 51 has a play
resource allocated.

Channel table:
 48 :ownDev 11 type 1 ownQ 119

defOwn 35801deferPid -1 pendingForce 0 pendingForceDev 0
profile ptr 0xd140600 work 0x00000000

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 333

timerID 397267 nTimers 1
Allocated List: empty
Restricted List: empty
Pending List:

SP_PLAY(0) tag 0x1card -1allocNo 0x0next 0x0
Change Own Pending List: empty
Context stack: size: -1 pointer 0x0
Uninitialized context stack

 51 :ownDev 10 type 1 ownQ 120
defOwn 35801deferPid -1 pendingForce 0 pendingForceDev

0
profile ptr 0xd1403000 work 0x00000000
timerID 397020 nTimers 1
Allocated List:

SP_PLAY(2) tag 0xfeedcard 4allocNo 0x20000next 0x0
Restricted List: empty
Pending List: empty
Change Own Pending List: empty
Context stack: size: -1 pointer 0x0
Uninitialized context stack

rmdb also can be used to check the resource utilization of SSP card. The
following example uses rmdb -c8,10 from the command line to show a dump
of the card table maintained by the RM driver. Of interest here are the
Saturated, Highwater, and Current usage vectors and the usage vectors for
the packfile resources such as SP_WW_RECOG and SP_PLAY.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 334

8 : MTC_INSERV 0 0x00000000
 3 : /vs/pack/sp.pack.69 4 functions
 2 "SP_WW_RECOG " [416 0 1666 0][0/120]
 3 "SP_ECHOCAN " [208 0 1666 0][0/120]
 0 "SP_PLAY " [208 0 0 208][0/48]
 1 "SP_RECORD " [208 0 0 208][0/30]
 Saturated : [10000 10000 20000 10000]
 High Water : [3744 0 19992 624]
 Current : [0 0 0 0]
 Allocation # : 0x0 0x0 0x0 0x0
10 : MTC_INSERV 0 0x00000000
 0 : /vs/pack/sp.pack.1 2 functions
 0 "SP_PLAY " [208 0 0 208][0/48]
 1 "SP_RECORD " [208 0 0 208][0/30]
 Saturated : [10000 10000 0 10000]
 High Water : [1040 0 0 1040]
 Current : [0 0 0 0]
 Allocation # : 0x0 0x0 0x0 0x0

SSPs are complex resources made up of multiple hardware and software
components. Utilization of SSP resources by a function cannot be described
with a single value. Usage vectors allow for the description of SSP functional
usage across multiple components. For the purposes of practical guidance in
understanding the data provided with rmdb -c, think of the usage vector as
abstract components of the SSP. Each function uses some number of units

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 335

from each of the four components. For example, SP_PLAY uses 208 units of
components 1 and 4 and 0 units of components 2 and 3.

The Saturated vector shows how many units of each component are
available on the SSP card. The High Water vector shows the highest level of
utilization the card has had since it was put in service. The Current vector
shows the current level of utilization.

Administrators may check this data periodically or when experiencing load
related problems to assess the level of SSP utilization and potential for
delayed resource allocation.

Text-to-Speech This section describes the IRAPI functions that support Text-to-Speech (TTS)
play and control. TTS may run either on the CPU or the SSP. CPU
supported TTS requires a fast CPU (120 MHz or faster) and installation of the
Intuity CONVERSANT system Text-to-Speech Package. Hardware assist
TTS requires one or more SSP circuit cards capable of running TTS and the
installation of the Intuity CONVERSANT system Text-to-Speech Package.
See Intuity CONVERSANT System Version 7.0 System Description, 585-
313-204, and the maintenance book for your platform for additional
information about the hardware and software requirements for the TTS
packages.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 336

ASCII text may be queued for play using any of the text queuing functions
described below. Play commences when the irEnd(3IRAPI) function is
called. Voice and text may not be queued together. Any voice play requests
that are queued must be played with irEnd(3IRAPI) and play must complete
before text may be queued for play.

TTS Queuing

The following functions may be used to queue ASCII text for play:

• The irSay(3IRAPI) function is used to queue text from an open voice file
descriptor. This file descriptor is obtained from irOpen(3IRAPI).

Note: In Intuity CONVERSANT System Version 5.0, the irSay() function
expected a UnixWare file descriptor rather than a voice file
descriptor as an argument. All irSay() functions in Version 5.0
applications must be changed to irFDSay() using an editor.

• The irFDSay(3IRAPI) function is used to queue text from an open file
descriptor. This file descriptor is obtained from a call to open(2).

Note: This is the standard UnixWare system call open(2), not the
irOpen(3IRAPI) function used to obtain a voice file descriptor.

• The irBSay(3IRAPI) function is used to queue text from a buffer.

• The irFSay(3IRAPI) function is used to queue the entire contents of a
specified file.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 337

TTS Play and Control

The following functions are used to control playing of queued text:

• The irEnd(3IRAPI) function is used to start the play of queued text. This
puts the IRAPI in the IRS_SAYING state [see IrSTATES(4IRAPI)]. The
IRF_MORE flag may be used with this function to allow more text to be
queued and played while the IRAPI is in the IRS_SAYING state. (This
flag is not valid for voice play requests.) If the IRF_MORE flag is not used
with irEnd(), the application must receive an IRE_SAY_DONE event to
indicate play is complete before more text may be queued.

• The irStop(3IRAPI) function may be used to stop TTS activity on a
channel before normal completion. Saying is stopped when the
application receives an IRE_SAY_DONE event.

Note: The irPlayResume(3IRAPI) function cannot be used for TTS. The
irGetVCount(3IRAPI) function can be used for TTS.

Applications should be written to handle the possible denial or delay of TTS
resource allocation when irEnd() is used. Depending on the value of the
IRP_RESOURCE_RETURNMODE parameter [see
irPARAMETERS(4IRAPI)], irEnd() may return IRR_FAIL or IRR_PENDING if
the TTS resource is not immediately available.

Platform
Management

This section discusses various functions provided as an interface to the
IRAPI platform, the IRAPI timer feature, errors, tracing, and logging.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 338

Platform Interface

An IRAPI process must register with the system upon startup with the
irRegister(3IRAPI) function. This function takes a unique process name
string as an argument. The process name must not exceed
IRD_MAX_APP_NAME characters in length (see irDefines.h). The process
name must be the same name given with the -p option to the
defService(1IRAPI) command. The irRegister(3IRAPI) function returns the
UnixWare message queue key of the calling process if successful. IRR_FAIL
is returned if an error occurs.

A process may obtain the UnixWare message queue key of another IRAPI
process by calling irGetQKey(3IRAPI) with the process name of that process.

The number of channels configured in the system may be obtained with the
irNumChans(3IRAPI) function. It returns the number of channels which exist
that are of the type(s) specified in its argument. Two types are supported:
IRD_REAL and IRD_VIRTUAL. These values may be logically ORed
together to obtain a total consisting of more than one type of channel.

Channel Service States

The service state of a channel can be obtained with the
irServiceState(3IRAPI) function. There are several possible service states.
The two most common are IRD_INACTIVE (channel is “on hook”) and
IRD_ACTIVE (channel is “off hook”).

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 339

Library States

The IRAPI library state for a channel may be obtained with the
irLibState(3IRAPI) function. This function may be used to test for an
uncompleted activity that an application is performing on the channel. For
example, if voice play is in progress, the library state is IRS_PLAYING. If the
application has done an irAnswer(3IRAPI) and has not yet received the
IRE_ANSWER_DONE event, the library is in the IRS_ANSWERING state.
The many possible states that the IRAPI library may be in are described in
IrSTATES(4IRAPI).

Sending Messages to Other Processes

There are three functions described in irPostEvent(3IRAPI) which may be
used to send a message to another process. One of these functions should
be used instead of the old mesgsnd(3SPP) routine. The choice of which
function to use is only a matter of convenience for the programmer. If the
receiving process is an IRAPI process, it receives the message as an
IRE_EXTERNAL event through a call to irCheck(3IRAPI) or
irWCheck(3IRAPI). Otherwise, the receiving process gets an IPC message
through the mesgrcv(3SPP) function (see Appendix C, C-Library Functions
(566)).

• The irPostEvent() function requires a pointer to a message buffer and the
length of the buffer as arguments. The application developer must fill the
irWhoTo (destination queue key) and the irChan (channel number) fields
in the message buffer before calling the function.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 340

• The irPostEventC() function sends a message to whatever process owns
a given channel. This function requires the channel number as an
argument in addition to the message buffer and length.

• The irPostEventQ() function sends a message with a message queue
key. It requires the queue key as an argument in addition to the message
buffer and length.

Timer Management

The IRAPI provides a timer management facility with the following
irTimer(3IRAPI) functions:

• The irStartTimer() function starts a timer for a specific channel. If the
timer expires before it is canceled, an IRE_CLOCK event is triggered for
the channel. Multiple timers per channel may be started as long as they
are given unique tag values.

• The irCancelTimer() function cancels a channel specific timer. The same
tag value used to start the timer must be used to cancel it.

• The irStartPTimer() function starts a process timer for the process calling
the function. If the timer expires before it is canceled, an IRE_CLOCK
event with a channel ID of IRD_NULL is triggered. Multiple process level
timers may be started as long as they are given unique tag values.

Timer intervals are in milliseconds but have a 10 millisecond granularity.
Timers may be set to go off once or repeatedly at the specified interval.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 341

Errors – Tracing, and Logging

Error messages may be logged by IRAPI applications using the same logMsg
interface routines provided for Data Interface Processes (DIPs) described in
Chapter 6, Message Logger , and Appendix C, C-Library Functions (566).
The irRegister(3IRAPI) function calls logInit(), eliminating the need for IRAPI
applications to use logInit(). The db_init(), db_pr(), and db_put() functions
are still available and work for printing messages to the system trace, but
IRAPI processes should use the newer irTrace(3IRAPI) functions instead.
The older functions may not be supported in the future.

Note: Not all error conditions that occur within the IRAPI library are
logged. The application developer must decide whether to log
certain errors based on the return value of the IRAPI functions and
the value of the irError variable.

The system trace facility provides a means of printing messages to a display
terminal on which the trace(1IRAPI) command is being executed. Trace
messages may be selectively output using process, channel, area and level
parameters. There are 16 user defined areas and levels and 16 areas and
levels reserved for the system. The irTrace(3IRAPI) functions support a
variety of tracing operations:

• irTrace(3IRAPI) and irQTrace(3IRAPI) — Channel level tracing.
Messages printed with these functions appear in the system trace if the
specified channel is being traced. IrQTrace(3IRAPI) is a macro that
executes more quickly than irTrace(3IRAPI), but does not allow a variable
number of arguments.

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 342

• irTraceP(3IRAPI) and irQTraceP(3IRAPI) — Process level and all error
tracing. Messages printed with these functions appear in the system
trace if the process printing them is being traced. irQTraceP(3IRAPI) is a
macro that executes more quickly than irTrace(3IRAPI), but does not
allow a variable number of arguments.

Note: Do not call irTrace(3IRAPI) or irQTrace(3IRAPI) with an invalid
channel number. If this occurs, the trace message will always be
displayed regardless of whether the process or channel is being
traced.

• irTrace_Put(3IRAPI) — Backward compatibility to db_put(3SPP). This
function prints a message to the trace output unconditionally.

• irTRACECHAN_CHK(3IRAPI) and irTRACEPROC_CHK(3IRAPI) —
check tracing. These macros may be used to check to see if tracing is on
for a particular channel or process before executing a block of code.

• irSetTraceChan(3IRAPI), irSetTraceQkey(3IRAPI),
irSetTraceArea(3IRAPI), irSetTraceLevel(3IRAPI),
irSetTraceLogMode(3IRAPI), and irSetTraceDateMode(3IRAPI) — Set
system tracing parameters. These functions may be used to change
current values of the channel, process (by specifying the message queue
key), area, level, log mode and date mode parameters of an executing
trace command. (No output appears if a trace command is not running.)

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 343

The IRAPI contains many convenience functions that may be used with error
and trace messages to print the symbolic names of IRAPI values. These
functions are described in irErrorStr(3IRAPI) and irName(3IRAPI):

• irErrorStr(3IRAPI) — Character string describing an error

• irErrorName(3IRAPI) — Symbolic name of an error code

• irPError(3IRAPI) — Print to stderr an error description and user text

• irPName(3IRAPI) — Parameter name [see IrPARAMETERS(4IRAPI)]

• irSName(3IRAPI) — Library state name [IrSTATES(4IRAPI)]

• irEName(3IRAPI) — Event name [IrEVENTS(4IRAPI)]

• irEMName(3IRAPI) — Event modifier name [IrEVENTS(4IRAPI)]

• irAName(3IRAPI) — Algorithm name [IrALGORITHMS(4IRAPI)]

• irSvcStName(3IRAPI) — Service state name [IrDEFINES(4IRAPI)]

• irCName(3IRAPI) — Capability name [IrRESOURCES(4IRAPI)]

• irPrintEvent(3IRAPI) — Formatted string of event structure
[IrEVENTS(4IRAPI)]

• irPRIcmdName(3IRAPI) — PRI letter command number

• irPRImtName(3IRAPI) — PRI letter message type

• irXName (3IRAPI) — Extension function name (see IrEXTEND (4IRAPI)

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 344

Application Dispatch Interface

The IRAPI maintains a default owner for a channel, which receives ownership
of idle, in service, channels. The default owner is responsible for handling
IRE_NEWCALL events on channels that it owns, determining what
application should service the new call, and using irExec(3IRAPI) to invoke
the application on the channel. Normally the default owner is the AD
process. However, another process may change the default owner by using
irChDefOwn(3IRAPI).

The AD interface allows two different applications to be assigned to a
channel. The startup application is the application that is run when AD
receives an IRE_NEWCALL event. The standard application is the
application that is run when another IRAPI application invokes the AD
process with irExec(3IRAPI) and AD receives the IRE_EXEC event. When
an application gives up channel ownership with irDeinit(3IRAPI) the default
owner is notified with the IRE_DEFOWN event. Normally the startup and
standard applications are identical. In special cases where it is desirable to
have one application gather additional information about an incoming call
before the application that actually handles the call is invoked, it may be
convenient to assign them as different applications. (See the assign
command in Appendix A, “Summary of Commands,” in Intuity
CONVERSANT System Version 7.0 Administration, 585-313-501, for more
details.)

The following code fragment illustrates how the standard AD process handles
the IRAPI events involved in dispatching applications:

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 345

while (1)
{
 irWCheck();
 index = IRD_AD_STARTUP;
 case (event_id)
 {

IRE_EXEC:
 index = IRD_AD_STANDARD;
 irInit(cid);

IRE_NEWCALL:
 iraQueryADTables(cid, index, application)
 if (found)

irExec(.....);

 if (not found)
log error

 break;
IRE_DEFOWNER:

 irInit(cid);
 break;

default:
 break;

}
}

5 IRAPI IRAPI Run-Time Services

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 346

The IRAPI provides several functions for access to the AD interface. These
may be used to implement an alternative to the standard AD process if
desired.

• Initialize/add/delete AD entry in the channel and/or ANI/DNIS tables:

int iraInitADTables (int numchans, int numdnisani)
int iraInitADChannel (int numchans)
int iraInitADDnisani (int numdnisani)
int iraAddADChannel (int channel, int disp_mode,
 const char *reg_file)
int iraAddADDnisani (const IRA_STR_RANGE * dnisrange,
 const IRA_STR_RANGE* anirange, const char * reg_file)
int iraRemoveADChannel(int chan, int mode)
int iraRemoveADDnisani(const IRA_STR_RANGE * dnisrange,
 const IRA_STR_RANGE * anirange)

• Look up applications

int iraQueryADTables(channel_id cid, int mode,
 AD_APPL * appl)
int iraQueryADDnisani(int channel, int mode,
const char * dnisstring, const char *anistring,
 AD_APPL *appl)

• Read through tables

int iraReadADChannel(int chan, int mode, AD_APPL *p_appl)
int iraReadADDnisani(AD_DNISANI_ENTRY *p_ad_dnisani_entry)
int iraRewindADDnisani()

5 IRAPI Application Management

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 347

Application Management

This section discusses the steps necessary to compile and install an Intuity
Response Application Programming Interface (IRAPI) application on the
Intuity CONVERSANT system. The compile and install procedure uses the
chantest.c application, available on the system in the file
/vs/examples/IRAPI/chantest.c, as an example.

This section also discusses the various tools that are available to an
application developer when trying to debug an IRAPI application.

Compiling and Installing Applications

The following procedure details the steps necessary to compile and install an
IRAPI application.

1 Compile an IRAPI application.

The following shows the options and the libraries needed to compile an
IRAPI application. This example uses chantest.c as the application:

cc -I/att/include -L/vs/lib chantest.c -o chantest \
-lirEXT -lirAPI -lspp -lTOOLS -llog -lprism

All necessary libraries and header files are provided with the Intuity
CONVERSANT System Application Software package.

5 IRAPI Application Management

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 348

2 Install the executable file anywhere desired. It does not have to be
installed in any particular place on the system.

3 Install the speech files with the UnixWare cp(1) or cpio(1) commands in
the location where they are referenced by the application. For example,
the chantest.c application stores all its speech files in the
/speech/chantest directory.

4 Define the service for the IRAPI application using the defService(1IRAPI)
command. The following example shows how this is done for the
chantest application:

defService -n -p chantest -t P chantest

The -n option specifies that default values should be used for all options
not specified on the command line. The -p option specifies the process
name to which the service belongs. (In this case the service and process
names are identical.) The process name string must be identical to the
name used by the process as an argument to the irRegister(3IRAPI)
function. The -t option specifies that chantest is a permanent process.
This process should be running then the voice system is started and
continue running until the voice system is stopped. See defService in
Appendix A, “Summary of Commands,” in Intuity CONVERSANT System
Version 7.0 Administration, 585-313-501, for a description of other
options.

5 IRAPI Application Management

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 349

5 Assign the service defined in Step 4 to a channel or dialed number in the
same manner that TSM script services are assigned. See the assign
service command in Appendix A, “Summary of Commands,” in Intuity
CONVERSANT System Version 7.0 Administration, 585-313-501. The
following example assigns the chantest service to channel 0:

assign service chantest to chan 0

6 Run a permanent IRAPI application when the voice system is started.
The recommended way to accomplish this is to add a file to the
/etc/conf/init.d directory containing an inittab(4) entry for the IRAPI
process.

Debugging Applications

The following tools are available to an application developer when debugging
an IRAPI application. These tools include both UnixWare and Intuity
CONVERSANT system tools. For more information on the Intuity
CONVERSANT system tools, see Appendix A, “Summary of Commands,” in
Intuity CONVERSANT System Version 7.0 Administration, 585-313-501. For
more information on the UnixWare tools, see the UnixWare Command
Reference.

• bbs — Intuity CONVERSANT system

• debug — UnixWare

5 IRAPI Application Management

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 350

• irevmon — Intuity CONVERSANT system

• logCat — Intuity CONVERSANT system

• rmdb — Intuity CONVERSANT system

• shmview — Intuity CONVERSANT system

• trace — Intuity CONVERSANT system

• truss — UnixWare

• vtlmgr — UnixWare

bbs The bbs command can be used to display the bulletin board used for
interprocess communication.

debug The UnixWare debug(1) command can be valuable in locating program
errors in IRAPI or other C-programs. Among many other things, this program
can be used to:

• Get a stack trace for a program that has core dumped

• Single step through programs to trace program flow

• Set breakpoints and examine memory

• Set watchpoints to determine when memory locations change

5 IRAPI Application Management

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 351

This debugger (provided with UnixWare) is more powerful and easier to use
than sdb which precedes it. See the UnixWare Command Reference and the
UnixWare Programming in Standard C for detailed information on the use of
this command.

Note the following caveats when using this command:

• When debugging IRAPI applications, breakpoints and tracing should be
used with caution since they can cause timers to expire while the program
is suspended. You may introduce new problems that interfere with
reproducing the original problem.

• Single stepping may fail to stop at the next statement or function.

• It is easier to debug application code for which you have source files than
the internal IRAPI library routines. Without access to the IRAPI source
code, it may be difficult to investigate problems that involve IRAPI library
problems.

irevmon The irevmon command is a mechanism to monitor events for a process
and/or channel.

logCat The logCat command is used to display alarms and other events that occur
during program execution. These messages often provide the first warning
about a program error or other problem. The log messages supplement the
messages available from trace.

5 IRAPI Application Management

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 352

rmdb The rmdb command is used to display internal tables maintained by the
Resource Manager (RM) and to control the verbosity of RM trace messages.
See Using rmdb to Assess Resource Utilization on page 332, and Appendix
A, “Summary of Commands,” in Intuity CONVERSANT System Version 7.0
Administration, 585-313-501, for additional information on rmdb.

shmview The shmview command is used to display internal shared memory segments
maintained by the IRAPI and run time systems.

trace The trace(1IRAPI) command is used to get detailed information about the
program flow for IRAPI applications and other Intuity CONVERSANT system
processes.

In general, tracing an application is one of the best ways to debug an
application. It provides minimal additional overhead on the process being
debugged. In very rare cases, tracing may change the behavior of the
problem by changing the timing of events.

The trace command options can be used to significantly alter the verbosity of
the output. If in doubt about how much information to collect, it is best to
collect more than enough information into a trace output file that can be
searched later (using vi, grep, awk, etc.). When a small amount of trace
output is expected, it may be useful to send the output through the UnixWare
tee(1) command. The tee command displays the output on the screen and
saves it to a file for viewing later. When a large amount of trace information is
expected, redirect the output directly to a file. Directing a large amount of

5 IRAPI Application Management

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 353

information to the screen using tee causes delays in writing to the terminal,
and thus messages may be lost.

The following example of the trace command provides detailed tracing
information about TSM using the tee command:

trace tsm date chan all area all level all | tee /tmp/trace.out

The following example of the trace command provides detailed tracing
information about TSM to the /tmp/trace.out file.

trace tsm date chan all area all level all > /tmp/trace.out

The date option causes the trace output to include date and time stamps.
This helps establish the time between events and helps reconcile the trace
output with events and alarms displayed by the logCat command (described
above).

As described in IRAPI Run-Time Services on page 224, IRAPI applications
can use trace functions to provide application-specific tracing messages.
These application-specific trace messages can complement the trace
messages generated by internal IRAPI functions.

The TRACE_BUFFER_SIZE described in irAPI.rc(4IRAPI) determines the
number of trace records maintained internally. If a larger value is used for
this parameter, you have less risk of losing trace records because you
exceeded the buffer size.

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 354

truss The UnixWare truss(1) command can be used to display all system calls
made by a process. The process may already be running, in which case
truss attaches to the process image. You can also use the truss(1)
command to start a process by using the process name as an argument to
the truss(1) command.

vtlmgr If better X-windowing tools are not available, it is often useful to use the
UnixWare vtlmgr(1) command to have multiple terminal sessions available.

Performance and System Tuning for IRAPI Applications

This section describes the resource management performance issues for
IRAPI applications. This chapter also provides a list of the Resource
Manager (RM) driver tunable parameters for the system. These parameters
control the RM driver’s capacity and behavior.

Resource Management

Application developers who use dynamic resources should be aware of the
following information:

• Resources are associated with channels. When an application allocates
a resource, it is attached to the channel. The resource can only be
applied to the given channel. The application cannot share a single

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 355

resource over a number of channels that it owns. In general, applications
should return resources to the resource manager as soon as they are
done with them.

• Dynamic resources are described to RM when the system initializes. The
IRAPI uses these descriptions to drive the dynamic resources. This
description comes in three parts.

~ Functions are individual capabilities of which a dynamic resource card
is capable. For instance, play, record, and whole word recognition are
examples of functions.

~ Each function is identified by a name and has a “utilization vector” that
describes the load that it places on a resource card.

~ Each time a function is invoked, it consumes the specified amount of
the resource on the card.

• Resource cards are complex. The loads presented by various functions
to resources are also complex. The IRAPI includes a facility for resource
cards and functions to describe themselves to the platform. These
descriptions drive the use of the cards.

• Function and resource card usage descriptions are represented as
vectors. In order for the IRAPI to allocate a function to a card, the
function’s usage description added to the card’s current usage must not
exceed the maximum or saturated usage.

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 356

• Functions are grouped together into packfiles. The packfile description
includes the name of the packfile and the list of functions that the packfile
implements.

When a resource card is brought in service, it is assigned a saturated
usage and a packfile is loaded onto the card. The packfile includes the
programs that run on the resource card as well as the description of the
functions. The saturated usage of the card can vary depending on the
physical configuration. Users can examine the usage values of resource
cards using the rmdb command (see Appendix A, “Summary of
Commands,” in Intuity CONVERSANT System Version 7.0
Administration, 585-313-501).

• In general, the IRAPI tends to assign work to cards that run the fewest
number of functions. For example, if a system contains two cards – one
capable of recognition, echo cancellation, speech record and speech play
and the second capable of only speech record and speech play – the
IRAPI tends to assign all speech play and record functions to the second,
less capable card. If the second card eventually reaches its saturated
usage, then the IRAPI starts assigning speech play and record functions
to the first card. In cases where multiple cards have the same number of
functions, the IRAPI spreads the load evenly on those cards.

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 357

• The IRAPI includes facilities for managing contention for scarce
resources. If there are more requests for work than can be
accommodated with the current set of resource cards, applications are
free to wait for definite or indefinite amounts of time for the resource to
become available. If the resource becomes free within those time
constraints, the IRAPI allocates the resource to the application and
notifies the application via an IRE_GRANT message. If the resource
request cannot be filled within the time period, the IRAPI notifies the
application via an IRE_DENY message.

Note: You can also examine pending requests using the rmdb
command. See Appendix A, “Summary of Commands,” in Intuity
CONVERSANT System Version 7.0 Administration, 585-313-501,
for additional information.

Applications can also choose to not wait for a resource. In this case, if the
request cannot be filled immediately, the IRAPI does not notify the
application when the resource becomes free.

If a resource card is removed from service gracefully (that is, the
immediate argument is not used), the IRAPI does not assign any more
work to it until the card is returned to service. This allows the system to
gracefully remove resource requests from cards with pending remove
requests.

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 358

The following example of the rmdb -c command shows:

~ Usage vector per function utilization of an SSP

~ Saturated usage is vector at maximum utilization

~ High water mark is high historical value (since last start_vs)

~ Current is current usage value

8 :MTC_INSERV 0 0x00000000
3 :/vs/pack/sp.pack.694 functions
2 "SP_WW_RECOG "[416 0 1666 0][0/15]
 3 "SP_ECHOCAN "[208 0 1666 0][0/60]
 0 "SP_PLAY "[208 0 0 208][0/120]
 1 "SP_RECORD "[208 0 0 208][0/120]
 Saturated :[10000 10000 20000 10000]
 High Water :[3744 0 19992 624]
 Current :[0 0 0 0]
 Allocation # :0x0 0x0 0x0 0x0
10 :MTC_INSERV 0 0x00000000
 0 :/vs/pack/sp.pack.12 functions
0 "SP_PLAY "[208 0 0 208][0/120]
 1 "SP_RECORD "[208 0 0 208][0/120]
 Saturated :[10000 10000 0 10000]
 High Water :[1040 0 0 1040]
 Current :[0 0 0 0]
 Allocation # :0x0 0x0 0x0 0x0

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 359

Disk Performance

One of the major performance bottlenecks in the Intuity CONVERSANT
system is input and output (I/O) to the hard disk. For high-channel count
applications, the application should be structured so that it presents the disk
I/O subsystem with a manageable load.

The filesystem type chosen by default for the talkfiles (/home2/vfs by default)
is the 8K Veritas filesystem. One of the principle performance advantages to
using this filesystem is that it uses very large block sizes.

Note: This advantage is traded off against space efficiency: if a file uses
any portion of a block, the entire block is allocated. For example,
if there is a 9K file, two 8K blocks are allocated for it. The
remaining 7K bytes are “wasted.''

If you do not use the default speech filesystem, you should be careful to
make sure that the filesystem type is appropriate. Otherwise, disk throughput
suffers.

A single disk is capable of a finite amount of throughput. You can measure
the throughput on a disk with the sar -d command as shown in the following
example:

bop13# sar -d 5 5
bop13 bop13 4.2 1.1.2 i486 11/27/96
16:13:55 device %busy avque r+w/s blks/s avwait avserv

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 360

16:14:00 dsk-0 8 0.1 9 69 1.4 9.5
16:14:05 dsk-0 3 0.3 2 34 4.0 14.0

As the load on the disk rises, the percent busy (%busy) figure rises. As the
disk gets busier, the average time to service (avserv) a request increases.
Eventually, the disk is presented with more work than it can do and disk read
and write requests take a long time to complete. For applications that have
high I/O requirements (all 96 channel configurations qualify here), a second
disk is necessary and you must ensure that your application balances
requests between disks. The following methods may be used to balance the
load between disks:

• Put the database on one physical disk and the speech filesystem on
another

• Link individual directories between disks

• Use RAID via hardware or software

~ Software RAID solutions (like the Veritas Advanced File System) help
with load balancing through features like partition striping. Striping is a
RAID technique for storing contiguous virtual sectors on separate
physical disks. If a filesystem is striped across two disks, the even
sectors would be on one disk and the odd sectors would be on the
other. See the Veritas Advanced File System documentation for more
details.

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 361

~ Hardware RAID solutions are available commercially. To the voice
system, these look like a single SCSI disk. Internally, they can be
organized to enhance throughput or reliability.

• Use Network File System (NFS) to distribute access to speech files.

Note: Before you rely on NFS, you should make sure that you
understand the performance and reliability implications.

Performance via NFS is complicated because there will be multiple
machines making requests of a NFS server. The variability of the load
requested by all of the clients of a given file server may be high. In order
to service all of the requests in a reasonable time, you must ensure that
both the server and the network are sized to handle the load. This sizing
is highly application dependent.

If you build an application that uses a NFS server, you should make sure
that you have a configuration that delivers the kind of reliability that is
appropriate for your application. You should experiment with NFS to
make sure that behaviors like server or network crashes will not affect you
or your customer’s perception of reliability.

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 362

RM Tunable Parameters

The RM tunables are listed below. The default values for each parameter are
shown in Table 21 on page 366, and the size refers to the size of each
element. For example, NCHANNELS is sized at 121 channels by default and
each channel entry consumes 372 bytes. The amount of space devoted to
the channel table inside RM is 45,012 bytes.

Note: These parameters are set to support most configurations of the
Intuity CONVERSANT system. Ordinarily, it should not be
necessary for these parameters to be tuned. However, tuning
may be necessary in some particularly challenging configurations.

NCARDS

The NCARDS parameter specifies the maximum number of network interface
and resource cards configured in the system. Cards that are not controlled
by the voice system, like the central processing unit (CPU), the Ethernet, the
Token Ring, the remote maintenance board (RMB), etc., do not require
entries in the card table. This parameter normally should not have to be
tuned.

NCHANNELS

The NCHANNELS parameter specifies the maximum number of channels
configured in the system. There must be a channel entry for every type of
channel: real, virtual and NONEX. In addition, there must be at least one
virtual channel configured in the system.

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 363

NCHANNELGROUPS

The NCHANNELGROUPS parameter specifies the number of channel
groups configured in the system. This is not a user tunable parameter. Each
equipment group uses one channel group structure. This parameter is sized
to correspond to the number of equipment groups. Processes internal to the
Intuity CONVERSANT system depend on allocating an appropriate number
of channel groups.

Note: The number of equipment groups can not be changed simply by
changing this parameter.

NCONTEXTSTACK

The NCONTEXTSTACK parameter specifies the maximum depth of the
context stack for subprograms. This parameter should only require tuning on
systems that run applications that include subprograms that call other
subprograms.

NDEVICES

The NDEVICES parameter specifies the maximum number of applications
that can simultaneously use the IRAPI. Each IRAPI-based process
consumes a entry in the RM device table. When a process closes the driver
(by exiting), the entry is returned to a free pool. The device table should be
big enough to support the maximum number of IRAPI processes that are
concurrently running. When the system runs out of entries in the device
table, the following error is printed to the console:

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 364

RM TUNING ERROR: Out of cloned devices

Users can query the number of free devices by using the rmdb -d command.
Any entry with a process ID (pid) of -1 is available.

NDYNSTRUCT

The NDYNSTRUCT parameter specifies the number of dynamic resources
that are available to RM. RM uses dynamic resource structures to keep track
of:

• Allocated resources

• Pending allocations for resources, channels, and channel groups

• Restricted lists

If RM runs out of these structures, the IRAPI function fails with system errors
and the following message is printed to the console:

RM TUNING ERROR: Out of dynamicResourceList structures

You can query the number of free resources by using the rmdb command:

rmdb -D
 rmDynFreeListHead 0xd14915dc
 Entries on free list 128

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 365

NFUNCTIONS

The NFUNCTIONS parameter specifies the maximum number of functions
that run on resource cards. Functions are things like SP_PLAY,
SP_RECORD, SP_WW_RECOG, etc. This parameter normally should not
have to be tuned.

NTDM

The NTDM parameter is not user-tunable and is listed here only for
completeness. Users should not modify this parameter.

PROFILE_SIZE

This parameter controls the size of the call profile. The call profile is allocated
when a channel first takes a call and is never deallocated. So, if a channel
never runs an application, no call profile will be allocated for it, and no
memory will be consumed by the profile. Functions internal to the IRAPI
depend on an appropriate size for the call profile. This parameter is not user-
tunable.

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 366

Summary of RM
Tunable Parameters

The following table summarizes each of the RM tunable parameters, its
default, and its size are shown in Table 21 on page 366.

Table 21. Resource Manager Tunable Parameters

Parameter Description Parameter Name Default Size

Number of network
interface, resource cards

NCARDS 25 544

Number of channels NCHANNELS 121 372

Number of channel groups NCHANNELGROUPS 32 24

Size of channel’s context
stack

NCONTEXTSTACK 3 1

Number of processes that
can simultaneously open

NDEVICES 64 232

Number of dynamic
resource structures

NDYNSTRUCT 192 24

Number of functions
supported by all packs

NFUNCTIONS 15 72

Number of TDM busses NTDM 3 1028

Size of the channel's
profile

PROFILE_SIZE 3000 1

5 IRAPI Performance and System Tuning for IRAPI Applications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 367

Parameter Tuning
Procedure

To change the value of a tunable parameter, execute the following command

/etc/conf/bin/idtune paramete><value

where parameter is the name of the parameter for which you want to change
the value and value is the new value for the specified parameter.

Global Parameters

The IRAPI supports a number of global parameters. These parameters are
read only and system wide in scope. They are set in the file
/vs/data/irAPI.rc. Note that this file also contains TSM specific parameters
which do not apply to the IRAPI at large. See the online instructions on the
system about irAPI.rc(4IRAPI) for a description of the global parameters.

Applications can use irGetGlobalParam(3IRAPI) to get an integer-type global
parameter and irGetGlobalParamStr(3IRAPI) to get a string-type global
parameter.

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 368

6 Message Logger

Overview

This chapter describes:

• The message logger environment

• The procedure to use the message logger with customer-defined data
interface processes (DIPs)

• The procedure to add and change system message explain text

The purpose of this chapter is to provide application developers with the
information required to use the message logger to create and change error
messages and explain text for an application or DIP.

6 Message Logger Overview of the Message Logger

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 369

Overview of the Message Logger

The message logger provides facilities that allow UnixWare processes to log
messages to predefined destinations. Messages are logged from processes
coded as C-language programs, for example, custom DIPs.

Message Logger Purpose

Logger messages are typically used to alert administrators or operators of
errors encountered as calls are processed. For example, a DIP can report an
error to the message logger if it received data that could not be processed.
Logger messages can also be used to inform administrators and operators of
events completed by the calling process. For example, a DIP can report to
the message logger that it has successfully started and initiated a process.

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 370

Message Classes

Messages are catagorized into different “classes” depending on feature
package, subprocess, or module that logged them.

Some examples of message classes are:

• MTC — logged by the maintenance module of IRAPI

• ASAI — logged by the Adjunct/Switch Application Interface feature
package

• TSM — logged by the transacation state machine

For more information about message classes, see "Alarms and Log
Messages" in the Intity CONVERSANT System Version 7.0 System
Reference, 585-313-205.

Message Logger Development

Several steps are involved in developing messages in custom software. After
determining points in the source code where messages should be logged,
you must specify the exact structure and wording of the message. This
includes specifying what text should be hard coded in the messages and
what text should be variable, that is, provided by the process at run time.
Variable text can include such things as an error code, channel number, or a
reason string, and can be a character string or integer.

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 371

Message Logger Structure

All messages in the logger system are organized internally by an indexing
scheme.

Format Text Message format text is in the {CLASS}msg files found in the
/vs/spool/log/formats directory. Custom DIPs must use the APPLmsg
format file.

! CAUTION:
Do not modify or add to any messages files other than APPLmsg files.
Doing so could render the entire message logger system inoperable or
produce unintelligible messages in the log files.

Header Files The message header files are found /vs/spool/log/head and provide the
internal index of the message to the DIP or C-language program that
originally sent the message. There must be a definition in the logAPPL.h file
for each message used from the APPLmsg file. These definitions must be
sequential starting at 1 and the index in logAPPL.h list must match the
msgID in APPLmsg file.

! CAUTION:
Do not modify or add to any message header files other than logAPPL.h
header files.

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 372

DIPs can, however, call message classes already defined in header files
other than logAPPL.h, if applicable.

The example provided in logAPPL.h File on page 406, in Appendix A,
Application Example, shows the following three message definitions in
logAPPL.h:

#define APPL_INITFAILlogAPPL(1)
#define APPL_MSGSNDERRlogAPPL(2)
#define APPL_UNKNOWNMSGlogAPPL(3)

These correlate to three messages found in the APPLmsg file, APPL001,
APPL002, and APPL003, also shown in “logAPPL.h File”.

Rules Files Each message must also have an associated rules file. The rules file is an
ASCII text file and is owned by the message class (such as, maintenance –
MTC).

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 373

Message Content and Format Specification

Message content and format is specified in the APPLmsg file found in
/vs/spool/log/formats. The following rules govern the parsing of this file:

• All blank lines are ignored.

• Comment lines are those with a “#” character in column 1.

• Each non-blank, non-commented line allocates one message.

• A message can span multiple lines using the “\” character at the end of
the line to indicate continuation to the next line.

While you can specify tab (“\t”) and newline (“\n”) characters in the message
text, it is not recommended since output message text formatting is handled
by the display messages command.

The standard INTUITY CONVERSANT system message text appears as
follows:

{msgID} {FRU} {EQ} {EQ#} ({MNEMONIC}) {Message Text}

In the case of APPLmsg, {msgID} is in the form APPLNNN where NNN is a
number ranging from 001 to the number of messages in the class. NNN must
match the index for the message it is specifying in the logAPPL.h file.
{msgID} must occupy eight spaces; if {msgID} is less than eight spaces it
must be right-filled with blanks. The APPLmsg file is delivered with
placeholders for messages APPL001 through APPL032. More can be added
if needed. To remove message IDs from the system, you must to replace the
error message with a placeholder or a new error message.

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 374

{FRU} is a two-character field indicating a field-replaceable unit. Examples in
the INTUITY CONVERSANT system environment include TR, T1, SP. If it is
not necessary to specify a field-replaceable unit, use a double dash as the
value in this field.

{EQ} is a two-character field indicating the type of resource to which the
message applies, for example, CH for channel, CA for card, or a double
dash, if not applicable.

{EQ#} is a three-digit number to specify the particular card or channel, for
example, CH1 for channel 1, CA1 for card 1, or a triple dash, if not
applicable).

({MNEMONIC}) is the #define symbol used in the logAPPL.h file to define
the message. Note that the MNEMONIC has parenthesis around it when the
field is specified in APPLmsg.

{Message Text} is the text associated with the message. The message text
can span multiple lines by placing the backslash (\) at the end of the line.

Message
Parameters

Parameters are the variable text items provided by the calling process at run
time. There are two types of parameters: character string, denoted with %s,
and integer, denoted with %d. These parameters may appear anywhere
within the {Message Text} area.

Most DIPs do not use the {FRU}, {EQ}, and {EQ#} fields. Therefore, these
fields can usually be specified as --, --, and ---, respectively.

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 375

If you do use the {FRU}, {EQ}, and {EQ#} as parameters in the APPLmsg
file, you must specify them as follows:

{FRU}%.2s
{EQ}%.2s
{EQ#}%.3d

Messages defined for the INTUITY CONVERSANT system included an
optional <<{NAME},{TYPE}>> field following each parameter specification.
This field is reserved for future use, and may be omitted from messages
defined in the APPLmsg file.

Message Mnemonic
Definition

You must modify logAPPL.h header file, located in /vs/spool/log/head, to
include any new messages specified in the APPLmsg file. Insert message
definitions in the file on the line preceding the last #endif statement. See
logAPPL.h File on page 406 in Appendix A, Application Example, for an
example of where to place the new messages.

In general, logAPPL.h entries should appear as follows:

#define {MNEMONIC} logAPPL({N})

where {MNEMONIC} is a define symbol for the message. By convention, the
form of the mnemonic is {CLASS}_{NAME} where {CLASS} is APPL and
{NAME} is a descriptive word or abbreviation for the message. {N} is the
message number within the APPL class of messages. It is important that
logAPPL(1) correspond to the message defined for APPL001, logAPPL(2)
correspond to the message defined for APPL002, etc.

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 376

Note: Many unused message IDs are allocated in the APPLmsg file. A
corresponding mnemonic is not required for unused messages.

Message Rules File
Definition

Each module’s rules file is located in its own registration directory. For
example, the rules file of the maintenance module is in
/mtce/registration/rules.

Compiling the Messages in the DIP

Note: The following procedure assumes that the APPLmsg file already
contains the message text and the logAPPL.h already contains
the mnemonics.

Use the following procedure to compile new messages in associated with a
DIP:

1 Include the following logger header files in the DIP code.

#include "/vs/spool/log/head/log.h"
#include "/vs/spool/log/head/systemLog.h"
#include "/vs/spool/log/head/logAPPL.h"

2 Place a call to logInit(3x) within the DIP to initialize the DIP/logger
interface. logInit(3x) has the format logInit (program_name) where
program_name is normally an all-upper-case representation of the name
of the executable (for example, “MYDIP”).

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 377

See logMsg on page 621 in Appendix C, C-Library Functions, for
additional information on logInit.

3 Place calls to logMsg(3x) within the DIP to send specified messages to
the logger. logMsg has the format

logMsg (MNEMONIC,EL_FL,arg1,arg2, . . .)

where MNEMONIC is the message mnemonic for the system message,
EL_FL is a macro that identifies the file name and line number in the code
where the call was generated, and the arg1,arg2,... are the parameters to
the message text.

Note: By default, the message mnemonic does not appear in output
from the display messages command. Use the logCat comman
to display messages and their corresponding mnemonics. Use
the logFmt command to enable and disable the appearance of
the message mnemonic. See Appendix A, “Summary of
Commands,” in Intuity CONVERSANT System Version 7.0
Administration, 585-313-501, for additional information about
logCat.

See logMsg on page 621 in Appendix C, C-Library Functions, for
additional information on logMsg.

4 Whenever logAPPL.h is changed, the error message IDs are not known
to the DIP until run time. To make the message IDs known to the DIP,
you must first add -D _INSTALLABLE_APPL in the DIP compilation

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 378

statement, as shown in Chapter 4, Data Interface Processes . Secondly,
add the Fcn_APPLMSG_START function to the DIP code, as shown in
the following example:

#include <stdio.h>
#include <sys/types.h>

#include “/vs/spool/log/head/log.h”

int Fcn_APPLMSG_START()

{
static int startLoc = -1 ;
static int readID ;

/* Have the message classes been read again? If /*/*
so, make sure we get the new value */

if (logClassReadCnt != readID)
 {

readID = logClassReadCnt ;
startLoc = -1 ;

 }

if (startLoc < 0)
 startLoc = logStartClass(“APPL”) ;
return(startLoc) ;

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 379

}

5 Rebuild the logger format and message indexing files and reinitialize the
logger by executing the following commands at the system prompt:

cd /vs/spool/log/formats
make -f formats.mk install
reinitLog

Note: If reinitLog fails, execute touch /vs/spool/log/head/*, then try
reinitLog again.

See Appendix A, “Summary of Commands,” in Intuity CONVERSANT
System Version 7.0 Administration, 585-313-501, for additional
information about reinitLog.

6 Compile the DIP code by linking the logger library files found in
/vs/lib/liblog.a and /vs/lib/libprism.a. See Step 8 of “Step 8: Compile
and Execute the DIP on page 173 in Chapter 4, Data Interface Processes
for details on compiling and executing the DIP.

7 Modify the new logger message priority, destination, and threshold using
the system message administration procedures provided in Chapter 3,
“Voice System Administration,” in Intuity CONVERSANT System Version
7.0 Administration, 585-313-501.

8 Test your messages as described in the following sections.

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 380

Testing a Single Error Message

Use the following example as a guideline to test a single error message. This
example shows how to test the sample message APPL001 (APPL_INITFAIL)
in Sample DIP on page 397 in Appendix A, Application Example. View the
APPLmsg file to see what strings are necessary to fill in the error, and the
view the logAPPL.h file for the index of the error, for example, logAPPL(1).

1 Enter cd /vs/spool/log/formats

2 Enter the following with a carriage return after each line:

logTest
0 0x01 2 stock_dip logAPPL(1) stock_dip “Could not open stocks file”

This logs one occurrence of the APPL001 error in the log.

3 To verify the error is correct, enter logCat -t3 to see the last three error
messages. Your message should be among the messages displayed.
For example:

* Wed Feb 23 12:30:53 1998 stock_dip logTest.c:418
APPL001 -- -- -- Application DIP ‘stock_dip’ failed to
initialize. Reason: Could not open stocks file.

6 Message Logger Message Logger Development

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 381

Testing Several Error Messages

To test several error messages at the same time, you can create a file with
the inputs to logTest for all the messages. This is an easy way to test all the
messages your DIP uses. The following example shows how to test the
sample messages APPL001, APPL002, and APPL003.

1 Create a file called /tmp/appl_errors that contains the following:

0 0x01 2 stock_dip logAPPL(1) stock_dip “Could not open stock file”
1 0x01 2 stock_dip logAPPL(2) stock_dip
1 0x01 2 stock_dip logAPPL(3) stock_dip

2 Enter the following:

cd /vs/spool/log/formats
logTest < /tmp/appl_errors

3 Check the error log to make sure your messages are correct by entering
logCat -t3

The system displays a message similar to the following:

* Wed Feb 23 12:39:56 1998 stock_dip logTest.c:418
APPL001 -- -- -- Application DIP ‘stock_dip’ failed to
initialize. Reason: Could not open stock file.
* Wed Feb 23 12:39:57 1998 stock_dip logTest.c:418
APPL002 -- -- --- Application DIP ‘stock_dip’ failed to send
message to script.
* Wed Feb 23 12:39:58 1998 stock_dip logTest.c:418

6 Message Logger Adding and Changing Explain Message Text

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 382

APPL003 -- -- --- Application DIP ‘stock_dip’ received an
unknown message.

Note: If any messages are incorrect (that is, the data provided does not
match the error format), the logger prints an expansion failure
error.

For more information about logTest and logCat, see Appendix A, “Summary
of Commands,” in Intuity CONVERSANT System Version 7.0 Administration,
585-313-501.

Adding and Changing Explain Message Text

Use the text editor or the command line to add and/or change explain
message text.

6 Message Logger Adding and Changing Explain Message Text

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 383

Using the Text Editor to Add Messages

Use the following procedure to add new explain message text using the text
editor:

1 Create the explanation text file in the
/gendb/data/explain/<alphabetic_letter> directory, where
alphabetical_letter matches the first letter of the explain message. That
is, AL_RESET_STA must appear in the A directory, TSM_NOSER must
appear in the T directory, etc.

2 Add the name of the explain text file and any aliases to the
/gendb/data/explain/translateLst file, as shown in the examples below

3 Enter :wq! to save the information and exit the file.

name Directory 12-Character Alias

ALERT002 AL_RESET_STATS AL_RESET_STA

ALERT003 AL_INVALID_THRESHOLD AL_INVALID_T

ASAI002 A_DSCRIPT_TERM A_DSCRIPT_TE

6 Message Logger Removing Error Messages

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 384

Using the Command Line To Add Messages

Use the following procedure to add new explain message text using the
edExplain command:

1 Log in to the system as root.

2 At the system prompt, enter edExplain <msg_id> where <msg_id> is the
messages ID (for example, APPL001).

See the edExplain command in Appendix A, “Summary of Commands,”
in Intuity CONVERSANT System Version 7.0 Administration, 585-313-
501.

Removing Error Messages

Use the following procedure to remove error messages:

1 Edit /vs/spool/log/head/logAPPL.h and remove the #define statements
for the custom error messages.

For example, in logAPPL.h File on page 406 in Appendix A, Application
Example, remove the following statements:

#define APPL_INITFAIL logAPPL(1)
#define APPL_MSGSNDERR logAPPL(2)
#define APPL_UNKNOWNMSG logAPPL(3)

6 Message Logger Removing Error Messages

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 385

2 Edit /vs/spool/log/formats/APPLmsg and replace the custom error
definitions with placeholders.

For example, in APPLmsg File on page 404 in Appendix A, Application
Example, replace the following statements:

APPL001 -- -- -- (APPL_IN ITFAIL) Application DIP ‘%s’
failed to initialize. Reason: %s.
APPL002 -- -- --- (APPL_MSGSNDERR) Application DIP ‘%s’
failed to send message to script.
APPL003 -- -- --- (APPL_UNKNOWNMSG) Application DIP ‘%s’
received an unknown message.

with:

APPL001 -- -- --- ({MNEMONIC}) %s
APPL002 -- -- --- ({MNEMONIC}) %s
APPL003 -- -- --- ({MNEMONIC}) %s

3 Rebuild the errors file by entering the following:

cd /vs/spool/log/formats
make -f formats.mk install
reinitLog

The system removes your custom error messages from the log.

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 386

A Application Example

Overview

This appendix presents an example of an application. It includes:

• Two versions of the script, the first showing the Intuity CONVERSANT

Script Builder action steps and the second the TAS script instructions
generated by the Script Builder software

• A data interface process (DIP)

• An external function, diptest, that calls the DIP

This application is a very simple example of a banking application. The script
prompts the caller for a social security number and a six-digit account
number. The social security number and account number are passed to the
DIP via the dbase instruction within the external function. In a real-life
application, the DIP probably would use the social security and account
numbers to access a local or remote database to retrieve information about
that account.

A Application Example Sample Script — Script Builder Action Steps

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 387

For simplicity, the sample DIP simply manipulates the social security number
and returns the result (last four digits of social security number) as the
account balance to the script. After the account balance is spoken to the
caller, the caller is given the chance to enter another social security number
and account number or to quit. You can use this sample application as a
model in building other applications for the Intuity CONVERSANT system.

Sample Script — Script Builder Action Steps

The following example shows the action steps defined in Script Builder.

 start:

1. Answer Phone
2. Announce

Speak With Interrupt
Phrase: "Hello, this is the DIP test script"

entry_loop:
3. Set Field Value

Field: acct_balance = 0
4. Prompt & Collect

Prompt
Speak With Interrupt

Phrase: "Please enter your SSN"
Input

Caller Input Field: ssn
Min Number Of Digits: 09

A Application Example Sample Script — Script Builder Action Steps

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 388

Max Number Of Digits: 09
Checklist

Case: "Input Ok"
Continue

Case: "Initial Timeout"
Reprompt

Case: "Too Few Digits"
Reprompt

Case: "No More Tries"
Quit

End Prompt & Collect
5. Prompt & Collect

Prompt
Speak With Interrupt

Phrase: "Please enter your account number"
Input

Caller Input Field: acct_num
Min Number Of Digits: 06
Max Number Of Digits: 06

Checklist
Case: "Input Ok"

Continue
Case: "Initial Timeout"

Reprompt
Case: "Too Few Digits"

Reprompt
Case: "No More Tries"

Quit

A Application Example Sample Script — Script Builder Action Steps

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 389

End Prompt & Collect
6. External Function

Function Name: diptest
Use Arguments: ssn acct_num
Return Field: acct_balance

7. Evaluate
If acct_balance < 0

8. Announce
Speak With Interrupt

Phrase: "This is an error situation, the return value
is"
Field: acct_balance As Nrmf

9. Quit
End Evaluate

10. Set Field Value
Field: acct_balance = acct_balance

11. Announce
Speak With Interrupt

Phrase: "Your account balance is"
Field: acct_balance As N$

12. Prompt & Collect
Prompt

Speak With Interrupt
Phrase: "Enter 1 to enter ssn again, 2 to quit"

Input
Caller Input Field: prompt
Max Number Of Digits: 01

A Application Example Sample Script — Script Builder Action Steps

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 390

Checklist
Case: "1"

Goto entry_loop
Case: "2"

Continue
Case: "Not On List"

Continue
Case: "Initial Timeout"

Reprompt
Case: "Too Few Digits"

Reprompt
Case: "No More Tries"

Quit
End Prompt & Collect

13. Announce
Speak With Interrupt

Phrase: "Thank you for calling the Dip Test
Script"
14. Disconnect
15. Quit

A Application Example Sample Script — TAS Script Language

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 391

Sample Script — TAS Script Language

The following example shows the same script in the TAS script language
described in Chapter 3, TAS Script Instructions . This script was generated by
Script Builder. The script labels used by Script Builder are not as descriptive
as labels that a programmer would use.

/* TSM script application dipscript */

#include "dipscript.h"
tfile("std_speech.pl" "dipscript.pl")
event(0,L__quit)
event(1,L__quit)

L_start:
trace(im.1)
tic (’a’)
trace (im.2)
talk ("Hello, this is the DIP test script")

L_entry_loop:
load (int.F_acct_balance, im.0)
trace (im.3, int.F_acct_balance)
/* get caller input */
ttdelim(-1, -1, -1, -1)
load (int.F__CI_TRIES_USED, im.0)

L_4: /* prompt */
talk ("Please enter your SSN")

L_5: /* try again */

A Application Example Sample Script — TAS Script Language

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 392

tttime (5, 5)
incr (int.F__CI_TRIES_USED, im.1)
getdig (0, ch.F_ssn, im.09)
load (int.F__CI_NO_DIGS_GOT, r.0)/* save for user */
trace (im.4, ch.F_ssn)
jmp (r.0 == im.0, L_2)
jmp (int.F__CI_NO_DIGS_GOT < im.09, L_3)
goto (L_1)

L_2: /* Initial timeout */
jmp (int.F__CI_TRIES_USED == im.3, L__quit)
goto(L_4)

L_3: /* too few digits */
jmp (int.F__CI_TRIES_USED == im.3, L__quit)
goto (L_4)

L_1:
/* get caller input */
ttdelim(-1, -1, -1, -1)
load (int.F__CI_TRIES_USED, im.0)

L_9: /* prompt */
talk ("Please enter your account number")

L_10: /* try again */
tttime (5, 5)
incr (int.F__CI_TRIES_USED, im.1)
getdig (0, ch.F_acct_num, im.06)
load (int.F__CI_NO_DIGS_GOT, r.0) /* save for

user */
trace (im.5, ch.F_acct_num)

A Application Example Sample Script — TAS Script Language

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 393

jmp (r.0 == im.0, L_7)
jmp (int.F__CI_NO_DIGS_GOT < im.06, L_8)
goto (L_6)

L_7: /* Initial timeout */
jmp (int.F__CI_TRIES_USED == im.3, L__quit)
goto (L_9)

L_8: /* too few digits */
jmp (int.F__CI_TRIES_USED == im.3, L__quit)
goto (L_9)

L_6:
trace (im.6,ch.F_ssn)
trace (im.6,ch.F_acct_num)
L__diptest(im.F_ssn, im.F_acct_num)
load (int.F_acct_balance, r.0)
trace (im.6, r.0)
trace (im.7)
jmp (int.F_acct_balance >= im.0, L_11)
trace (im.8)
talk ("This is an error situation, the return

 value is")
tnum (int.F_acct_balance, ’t’)
trace (im.9)
goto (L__quit)

L_11:
load (int.F_acct_balance, int.F_acct_balance)
trace (im.10, int.F_acct_balance)
trace (im.11)
talk ("Your account balance is")

A Application Example Sample Script — TAS Script Language

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 394

L__sp_dol(int.F_acct_balance)
 /* get caller input */
ttdelim(-1, -1, -1, -1)
load (int.F__CI_TRIES_USED, im.0)

L_15: /* prompt */
talk ("Enter 1 to enter ssn again, 2 to quit")

L_16: /* try again */
tttime (5, 5)
incr (int.F__CI_TRIES_USED, im.1)
getdig (0, ch.F_prompt, im.01)
load (int.F__CI_NO_DIGS_GOT, r.0) /* save for

 user */
trace (im.12, ch.F_prompt)
jmp (r.0 == im.0, L_13)
jmp (ch.F_prompt == im.’1’, L_entry_loop)
jmp (ch.F_prompt == im.’2’, L_12)
goto (L_12)

L_13: /* Initial timeout */
jmp (int.F__CI_TRIES_USED == im.3, L__quit)
goto (L_15)

L_12:
trace (im.13)
talk ("Thank you for calling the Dip Test

 Script")
trace (im.14)
tic (’h’)
trace (im.15)
goto (L__quit)

A Application Example Sample External Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 395

L__quit:
quit()

L__save_events:
rts ()

L__seasonal_greetings: /* play seasons greetings messages,
 if any */

rts ()
#include "/vs/bin/ag/lib/_sp_dol.t"
#include "diptest.t"

Sample External Function

The following is an example of an external function. This external function is
called by the script included in this chapter. In this example, the external
function is in the same directory as the script.

/*
* FUNCTION diptest — DIP test script sample external
* function
* INPUTS:
* SSN — field with the SSN
* acct num — field with the account number

A Application Example Sample External Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 396

* RETURNS: account balance >= 0 , failure < 0
*/

DEFARG_COUNT(2)
DEFARG(ssn,char,in) /* r.3 */
DEFARG(acct_num,char,in) /* r.2 */

#define ACCT_REQ 8500 /* mcont for the DIP */
#define SZUV17 /* length of ssn and acct num */
#define F__TEMP10 10 /* 10-byte offset into TEMP */

L__diptest:
strcpy(ch.F__TEMP, *ch.3) /* load ssn number */
strcpy(ch.F__TEMP10, *ch.2) /* load acct number */
dbase(im."bankMgrDip", ACCT_REQ, ch.F__TEMP, im.5,

 ch.F__TEMP, SZUV)
trace (im.18001, r.0) /* mcont is returned into r.0 */
load (r.0, int.F__TEMP)
trace (im.18006, r.0)
rts()

A Application Example Sample DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 397

Sample DIP

The following is an example of a DIP. This is the same example used in
Chapter 4, Data Interface Processes , except that the DIP has been modified
to manipulate the social security number as described in the overview of this
chapter.

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/mesg.h>
#include"/usr/spool/log/head/log.h"
#include"/usr/spool/log/head/systemLog.h"
#include"/usr/spool/log/head/logAPPL.h"
#include"shmemtab.h"
#include"spp.h"
#include"mesg.h"
#include"VS.h"

/* Define all messages that can be received

* For example, caller_info_msg is a message that is sent by
* the TSM script giving the caller’s social security number.
* Also define the message ids for each messages received.
* These message ids should be in a header file instead of
* here.
*/

A Application Example Sample DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 398

#define ACCOUNT_REQUEST 8500
struct callerMsg {

struct mbhdr hd;
char socialSecurityNo[10];
char accountNo[7];

};

/* Define Message Receive structure
* Should be large enough to hold largest message.
* Add all received message structures in the following
* union.
*/

union rcvMsg {
struct ms_univ u; /* the standard message (mesg.h) */
struct callerMsg c; /* caller’s info */

};

/* Define Message structures to be Sent.
* Also define the message id for each message.
* The message id should go in a header file but
* it’s shown here for convenience.
* The message ids should all be unique across all
* applications.
* Only one message is sent in this example but usually you’ll
* lots more.
*/

A Application Example Sample DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 399

#define ACCOUNT_INFO 8090 /* message id */
struct accountMsg {

struct mbhdr hd;
int balance;

};

static char *Myname="bankMgrDip"; /* Name of this DIP */
static short Myinstance=1; /* Instance of DIP */

/* Names of other processes you talk to */
#define DBDIPPER "bankTellerDip"

main()
{

int myQkey;
int noBytesRead;
int accountBalance;
int retCode;
union rcvMsg rcvbuf;
struct accountMsg acctbuf;

/* initialize DIP */

/* Logger Initialization */

/* Sleep if necessary to wait for the voice system
/* to finish diagnosing the cards */

A Application Example Sample DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 400

logInit(Myname);

/* Get your dynamically-assigned Qkey */
myQkey = VSstartup(Myname, Myinstance, DIP_PROC);
if (myQkey <= 0) {

db_pr("%s: Can’t get qkey: VSstartup: %s\n”);
VSerror(myQkey);

logMsg(APPL_INITFAIL,EL_FL,*Myname,"Can’t get

 qkey");
sleep(5); /* to slow down continuous respawning */
exit(1);

}

/* Clear out my message queue */
noBytesRead = mesgrcv(myQkey, &rcvbuf, sizeof(rcvbuf),

0, IPC_NOWAIT,NULL);
while (noBytesRead >= 0) {
noBytesRead = mesgrcv(myQkey, &rcvbuf, sizeof(rcvbuf),

0, IPC_NOWAIT,NULL);
}

/* Main processing Loop:
* Read and process message for ever
*/
while (1) {

/* wait for a message to arrive */
noBytesRead = mesgrcv(myQkey, &rcvbuf, sizeof(rcvbuf),

0, 0);

A Application Example Sample DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 401

if (noBytesRead < 0) {

/* Something went wrong with the read
* Could be that the reading was interrupted (EINTR).
* There should be some error processing here but
* for brevity I’ll just try to read again.
*/
continue;
}

/* Got a message! Get to work */
db_pr("%s: got message: chan =%d, id=%d, senderQkey=%d\n”,

*Myname,rcvbuf.c.hd.mchan, rcvbuf.c.hd.mcont,
rcvbuf.c.hd.morig);

/* Typically, the DIP will have a case for each
* possible message id.
* In this example, we only have one possible message
* that can be received.
*/
switch (rcvbuf.c.hd.mcont) {
case ACCOUNT_REQUEST:

/* TSM script wants account balance info */
db_pr("%s: request for account info for SS#=%s\n”,

*Myname, rcvbuf.c.socialSecurityNo);
db_pr("%s: and account#=%s\n”,

rcvbuf.c.accountNo);
/* Go out and get the account information

A Application Example Sample DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 402

* and return it in accountBalance.
* This balance (for simplicity) is generated from
* the last 4 digits of the SSN
*/
accountBalance = atoi(rcvbuf.c.socialSecurityNo+5);
db_pr("%s: the balance = %d\n”,, *Myname,

accountBalance);

/* Now package and send respond back */
acctbuf.hd.mchan = rcvbuf.c.hd.mchan;
acctbuf.hd.mtype = 1;
acctbuf.hd.morig = myQkey;
acctbuf.hd.mcont = ACCOUNT_INFO;
acctbuf.hd.mseqno = 0;
acctbuf.balance = accountBalance;
retCode = mesgsnd(TSM, &acctbuf, sizeof(acctbuf), 0);
if (retCode < 0) {

/* Message send failed; log message
* Note that before this will work you
* must add your DIP errors into the logger system.
*/
logMsg(APPL_MSGSNDERR, EL_FL, acctbuf.hd.mchan,

*Myname);
}
break;

default:
/* Notify logget that an unknown message was
* received.

A Application Example Sample DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 403

*/
logMsg(APPL_UNKNOWNMSG, EL_FL, rcvbuf.c.hd.mchan,
 *Myname);
break;

} /* switch on message id */
 } /* while loop that reads forever */

} /* Main program */

int Fcn_APPLMSG_START()

{
static int startLoc = -1 ;
static int readID ;

/* Have the message classes been read again? If so, */
/* make sure we get the new value */

if (logClassReadCnt != readID)
 {

readID = logClassReadCnt ;
startLoc = -1 ;

 }
if (startLoc < 0)
 startLoc = logStartClass(“APPL”) ;
return(startLoc) ;

}

A Application Example APPLmsg File

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 404

APPLmsg File

The following messages are samples in the
/usr/spool/log/formats/APPLmsg file to be modified as required for your
application. DO NOT add new messages unless all of the messages in this
file have already been used. If you must extend the file, add a block of
unused messages, so that you do not extend the file each time you add one
new message.

APPL001 -- -- --- (APPL_INITFAIL)\
Application DIP ’%s’ failed to initialize. \
Reason: %s.

APPL002 -- -- %3d (APPL_MSGSNDERR) \
Application DIP ’%s’ failed to send message to script.

APPL003 -- -- %3d (APPL_UNKNOWNMSG) \
Application DIP ’%s’ received an unknown message.

APPL004 -- -- --- ({MNEMONIC}) %s
APPL005 -- -- --- ({MNEMONIC}) %s
APPL006 -- -- --- ({MNEMONIC}) %s
APPL007 -- -- --- ({MNEMONIC}) %s
APPL008 -- -- --- ({MNEMONIC}) %s
APPL009 -- -- --- ({MNEMONIC}) %s
APPL010 -- -- --- ({MNEMONIC}) %s
APPL011 -- -- --- ({MNEMONIC}) %s
APPL012 -- -- --- ({MNEMONIC}) %s

A Application Example APPLmsg File

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 405

APPL013 -- -- --- ({MNEMONIC}) %s
APPL014 -- -- --- ({MNEMONIC}) %s
APPL015 -- -- --- ({MNEMONIC}) %s
APPL016 -- -- --- ({MNEMONIC}) %s
APPL017 -- -- --- ({MNEMONIC}) %s
APPL018 -- -- --- ({MNEMONIC}) %s
APPL019 -- -- --- ({MNEMONIC}) %s
APPL020 -- -- --- ({MNEMONIC}) %s
APPL021 -- -- --- ({MNEMONIC}) %s
APPL022 -- -- --- ({MNEMONIC}) %s
APPL023 -- -- --- ({MNEMONIC}) %s
APPL024 -- -- --- ({MNEMONIC}) %s
APPL025 -- -- --- ({MNEMONIC}) %s
APPL026 -- -- --- ({MNEMONIC}) %s
APPL027 -- -- --- ({MNEMONIC}) %s
APPL028 -- -- --- ({MNEMONIC}) %s
APPL029 -- -- --- ({MNEMONIC}) %s
APPL030 -- -- --- ({MNEMONIC}) %s
APPL031 -- -- --- ({MNEMONIC}) %s
APPL032 -- -- --- ({MNEMONIC}) %s

A Application Example logAPPL.h File

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 406

logAPPL.h File

The following is the code for the logAPPL.h file located in
/usr/spool/log/head. There must be an definition in logAPPL.h for each
message used from APPLmsg.

/* @(#)logAPPL.h 8.1.1.2 16:54:41 6/28/93*/
#ifndef header_LOGAPPL_H
#defineheader_LOGAPPL_H

/* For compatibility with the old and new C++ define:*/

#ifdef c_plusplus

#ifndef __CCPLUSPLUS__
#define __CCPLUSPLUS__
#endif
#endif

#ifdef __cplusplus
#ifndef __CCPLUSPLUS__
#define __CCPLUSPLUS__
#endif
#ifndef CC_TYPE_SAFE
#define CC_TYPE_SAFE
#endif
#endif

A Application Example logAPPL.h File

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 407

#ifdef _INSTALLABLE_APPL
#ifdef__CCPLUSPLUS__
CC_EXTERN(int Fcn_APPLMSG_START() ;)
inline int logAPPL(int xx) {return
(Fcn_APPLMSG_START()+(xx)-1); }
#else

extern int Fcn_APPLMSG_START() ;

#define logAPPL(xx) (Fcn_APPLMSG_START()+(xx)-1)
#endif

#else

#ifdef __CCPLUSPLUS__
inline int logAPPL(int xx){return (_APPLMSG_START+(xx)-1); }
#else
#define logAPPL(xx) (_APPLMSG_START+(xx)-1)
#endif

#endif

#define APPL_INITFAILlogAPPL(1)
#define APPL_MSGSNDERRlogAPPL(2)
#define APPL_UNKNOWNMSGlogAPPL(3)

#endif

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 408

B Summary of TAS Script
Instructions

Overview

This appendix contains more detailed information about the transaction
assembler script (TAS) instructions discussed in Chapter 3, TAS Script
Instructions, and Chapter 4, Data Interface Processes, of this book.

The TAS script instructions are listed in alphabetical order. Each script
instruction is on a separate page, with the following information provided:

• Instruction name and syntax

• Purpose of the instruction

• What the instruction does

• Examples of the instruction

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 409

TAS Script Instruction Syntax

In presenting the syntax for a TAS script instruction, the following
conventions are used:

• The script instructions are displayed in bold type.

• Associated options are displayed in bold italic type.

• Examples are shown in constant-width type.

• Mandatory arguments or identifiers are displayed within
parentheses — ().

• Optional arguments or identifiers are displayed within brackets — [].

• Lists of options for a single argument are divided by pipe symbols — |, for
example, a|b|c|d.

and

Name The and instruction implements an AND operation on the specified
arguments.

Synopsis and(type.dst,type.src)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 410

Description The and instruction implements a bitwise AND operation on the arguments.
The results are stored in type.dst.

Example The following example clears the bits not set in FLAG in r.3.

and(r.3,FLAG)

atoi

Name The atoi instruction converts an ASCII string to an integer.

Synopsis atoi(type.dst,ctype.src)

Description The atoi instruction converts a null-terminated character string at the
ctype.src to an integer value and stores that value at the type.dst. If an error
occurs, the atoi instruction returns a 0 in type.dst.

Example The following example converts a null-terminated character string found at
the address labeled ISIZE to a numeric value and puts it in r.1.

atoi(r.1,ch.ISIZE)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 411

background

Name The background instruction starts and/or listens to background audio on the
specified channel.

Synopsis background("phrase_name",type.src)

background(type.src,type.src)

Description Note: A time division multiplexor (TDM) bus and a speech and signal
processor (SSP) circuit card must be installed in the system for
the background instruction to function properly.

The background instruction starts and/or listens to background audio on the
specified channel. The first argument is a phrase enclosed in quotation
marks
(" "). The phrase must match a phrase listed in the talkfile specified by the
currently active tfile instruction. The first argument can translate also to the
index number of a phrase in the talkfile. In this case, the argument must be
expressed according to the conventions of type.src. This syntax is similar to
the talk instruction, but only supports one phrase rather than a phrase list.

If this phrase is not playing already in the system, it is started and its audio
output added to the normal voice response prompts on the current channel.
Other channels may execute the same background instructions. The audio
then is added to those channels while it still is played on the first channel.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 412

When the phrase has been played, it starts again at the beginning. The
phrase continues to play as long as at least one channel requires it. The
background audio stops when all channels requesting it have dropped it.
Background speech plays at a volume level that is 33 percent of foreground
speech.

If the background instruction is successful, it returns 0 in r.0. If the
instruction is not successful, it returns a negative value in r.0.

The following are possible reasons the background instruction might fail:

• An attempt was made to add more than one background audio to a
channel

• Channel reached the limit for listen time slots (maximum of seven per
channel)

• No SSP circuit card is available

• All TDM slots are busy

• Reached system limit on number of backgrounds (MAXCHAN)

• System call failure

Note: On a Tip/Ring channel that is not using the TDM bus to play
speech (for example, the channel is set to “talk”, not “tdm”), the
foreground speech interrupts background speech. If the TDM bus
is used, background speech is heard continuously.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 413

Example #define ADD 1
#define DROP 0

tfile("/speech/talk/list.cabnt")
background("begin testing",ADD)
background(201,DROP)

case

Name The case instruction calls a function if the values are equal.

Synopsis case(type.src,type.src[,<subroutine_label>]<goto_label>)
case(type.src,type.src[,<subroutine_label> ()]<goto_label>)
case(type.src,type.src[,<subroutine_label>(type.src)]<goto_label>)
case(type.src,type.src[,<subroutine_label>](type.src,type.src)<goto_
label>)

Description The case instruction provides a conditional subroutine call that compares two
source values. If they are equal, the subroutine is called, and on return,
execution continues at the goto_label address. If they are unequal, the
statement is treated as a no-op instruction and execution continues. If the
subroutine_label is -1, no subroutine call is made and execution continues at
the goto_label. If the goto_label is -1, execution continues with the next
instruction.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 414

As is normal for subroutine calls, calling the specified subroutine saves the
values of all registers except r.0. Register 3 contains the first optional
subroutine argument and register 2 contains the second optional subroutine
argument.

Example Based on the value of int.FOLLOW_UP, one of two telephone numbers is
dialed.

case(int.FOLLOW_UP,F_ATD_A,CALL(APHONE),w4answ)
case(int.FOLLOW_UP,F_ATD_B,CALL(BPHONE),w4answ)
...
w4answ:
...

CALL: /* Call an attendant. Phone number is at address in r.3 */
tic(’o’, int.ATDTIC, *ch.3)
rts()

chantype

Name This script instruction enables scripts to determine on which type of channel
they are running.

Synopsis chantype ()

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 415

Description The chantype instruction returns in r.0 the following positive integer values
from the /att/include/irDefines.h header file (Table 22 on page 415):

A negative value is returned if an error occurs.

Table 22. chantype Return Values

Value Channel Type

IRD_TR Tip/Ring

IRD_T1 T1 (E&M) or E1 (CAS) protocol

IRD_PRI IDSN PRI protocol

IRD_LST1_DEF Line Side E1/T1 for Lucent Technologies
DEFINITY ECS or compatible switch

IRD_LST1_GAL Line Side T1 for Galaxy

IRD_LST1_ASAI Line Side E1/T1 for Lucent Technologies
DEFINITY ECS or compatible switch with
ASAI

IRD_ASAI Tip/Ring with ASAI

IRD_VIRT_CHAN Virtual channel

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 416

Example #include “/att/include/irDefines.h”

/* get channel type */
chantype()
load(int.F_chantype, r.0)
/* channel type must be TR, LSE1, or LST1 */
jmp(int.F_chantype == IRD_TR, L__chan_OK)
jmp(int.F_chantype == IRD_ASAI, L__chan_OK)
jmp(int.F_chantype == IRD_LST1_DEF, L__chan_OK)
jmp(int.F_chantype == IRD_LST1_GAL, L__chan_OK)
jmp(int.F_chantype == IRD_LST1_ASAI, L__chan_OK)

dbase

Name The dbase instruction sends a message to a data interface process (DIP).

Synopsis dbase (type.dip,mcont_field,ctype.dst,mbyte,type.src,nbyte)

Description The dbase instruction sends a message to a DIP and usually receives data in
return. It uses any DIP to interface with the host or local database. All the
arguments must be specified for the dbase instruction to execute. The
arguments are defined by the script writer. See Chapter 4, Data Interface
Processes, for more information.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 417

A message is sent to a DIP specified by the first argument in the dbase
instruction. The type.dip argument can be a DIP number (for hardcoded
DIPs) or name (for Dynamic DIPs). The mcont_field is a DIP-specific code
signifying the DIP action. The information returned by the DIP is stored at the
destination address specified by ctype.dst; its length is specified by mbyte. If
mbyte is negative, the dbase call will not wait for a response from the DIP.
The information passed to the DIP from the TSM is read beginning from the
address specified by type.src; its length is specified by nbyte. It is important
that the DIP and TSM script agree on the structure and contents of the
information passed. If the dbase call is successful and the DIP returns a
message to the script, r.0 is set to the mcont value of the DIP message.

If type.src is a register, nbyte is ignored. If nbyte is zero, no information is
passed to the DIP. If nbyte is negative, no message is sent to the DIP, but
the dbase call may wait (if mbyte is not negative) for a message from the
DIP. If the DIP is not running, r.0 is set to -1. If the DIP does not respond
within a reasonable time (the default value is 45 seconds), r.0 is set to -2. To
reset the default value for timeout, use the nwitime instruction.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 418

Example In the following example, this instruction uses DIP "Bankdip" to retrieve
information. The DIP action is defined by the second argument (LOGON).
The retrieved information is stored in user memory beginning at CUSTRECS
and has a length of SZCUSTREC bytes. CUSTRECS is found in the
application-name.def.h header file. The argument LOGONS is also defined
in the application-name.def.h header file and marks the starting address of
the information passed to the DIP for retrieving the information. The
LOGONS field is 5 bytes long.

dbase("Bankdip",LOGON,ch.CUSTRECS,SZCUSTREC,ch.LOGONS,5)

See Also getdig
getinput

decr

Name The decr instruction decreases a value.

Synopsis decr(type.dst,type.src)

Description The decr instruction decrements the type.dst value by the type.src value.

Example The following example decreases r.3 by the value defined by NSTKS.

decr(r.3,NSTKS)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 419

dipname

Name The dipname instruction translates a DIP number to a DIP name.

Synopsis dipname(ctype.dst, type.src)

Description The dipname instruction stores the DIP name in ctype.dst corresponding to
the TSM DIP number specified in type.src. Ctype.dst should be least
BNAMELENG (as defined in shmemtab.h) bytes long. The dipname
instruction stores a null string if the DIP number:

• Is not between 1–34 or 44–75

• Does not have an associated message queue already created

• Maps to a message queue key that is not assigned to a DIP

Note that the contents of the registers is not affected by this instruction.

The dipname instruction is used mostly for scripts that catch the DIP interrupt
event and need to translate the DIP number of interrupting DIP to a DIP
name.

Examples /* Space for DIP name */
#define DIPNAME 30
dipname(ch.DIPNAME,r.1) /*DIP number in register 1 */
dipname(ch.DIPNAME,0) /* DIP number 0 */

dipname(ch.DIPNAME,int12) /* DIP number in integer location 12 */

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 420

See Also dipnum

dipnum

Name The dipnum instruction translates a DIP name to a DIP number

Synopsis dipnum(type.dst,ctype.src)

Description The dipnum instruction stores the DIP number in type.dst corresponding to
the TSM DIP name specified in ctype.src. The dipnum instruction stores a -1
if the DIP name:

• Is invalid

• Does not have an associated message queue already created

• Maps to a message queue key that is not assigned to a DIP.

Note that the contents of the registers is not affected by this instruction.

Examples /* Space for DIP name */
#define DIPNAME 30
#define dipnum 48
dipnum(r.1, ch.DIPNAME)

dipname(int.dipnum, "Dip")

See Also dipname

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 421

dipterm

Name The dipterm instruction specifies that a DIP receives a message when the
script terminates.

Synopsis dipterm(type.dip[,flag])

Description The dipterm instruction specifies to TSM which DIP receives a termination
message when the script terminates. A DIP number or name may be used
for
type.dip. The dipterm instruction may be called repeatedly with different DIP
numbers or names. The termination message goes to all DIPs specified.

The optional flag may be used to turn off a dipterm setting. The valid values
for the flag are

1 — Set dipterm for dip (default)

0 — Reset dipterm for dip

The dipterm message is defined as the C-structure struct ms_univ (see
mesg.h). Figure 29 on page 422 and Figure 30 on page 423 show the fields
of the message and their values as set by TSM.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 422

Figure 29. dipterm Synopsis

/* message structure for dipterm message */
struct ms_univ {

struct mbhdr hd;
long arg[4];
};

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 423

Figure 30. dipterm Message Structure

struct
ms_univ

struct
mbhdr

message type = 1

channel = channel script
is running on

sender = TSM
(defined in mesg.h)

message id = SCRIPTTERM
(defined in tsm_dip.h)

sequence = arbitrary value

arg[0] = termination code
(defined in tsm_dip.h)

arg[1] = exit code
from quit () or exec()

arg[2] = not set

arg[3] = not set

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 424

arg[0], as shown, displays why the script terminated. As defined in tsm_
dip.h, there are several causes for a script to terminate.

arg[1] is set to the value specified in the quit or exec instructions.

Example The following example causes DIP0 to receive a termination message when
the script terminates.

dipterm(0)

The following example causes the DIP called “bankdip” to receive a
termination message when the script terminates.

dipterm("bankdip")

NORMALTERM A quit instruction in the script was executed.

DISCONTERM The call was disconnected.

SCRFAILTERM An error exists in the script code.

MTCTERM The MTC process seized the channel on
which the script is running.

EXECTERM The script exec’ed another script.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 425

div

Name The div instruction divides a value.

Synopsis div(type.dst,type.src)

Description The div instruction divides the type.dst value by the type.src value. The
integer quotient is returned in type.dst. The div instruction returns a value of
0 (zero) in Register 0 if no error occurred. If division by 0 is done and a -1
value is returned in Register 0, the result is set to the largest positive or
negative integer, depending on whether type.dst was positive or negative
originally.

Example The following example divides r.3 by the value defined by NSTKS.

div(r.3,NSTKS)

dtitos

Name The dtitos instruction converts the date and time from an internal form to the
“tm” structure form.

Synopsis dtitos(type.src, type.dst)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 426

Description The dtitos instruction converts the date and time from the internal UnixWare1
system representation to “tm” structure form. The type.src argument should
contain a number representing the UnixWare system internal representation
of time (number of seconds since 00:00:00 GMT, January 1, 1970). It is
recommended that the integer type be used for this argument. The resulting
“tm” structure (the nine-integer structure defined in CTIME(3C) in the
UnixWare System V Programmer’s Reference Manual) is put in type.dst (that
is, type.dst defines a starting address for the result).

The dtitos instruction returns 0 in script register 0 (r.0) if the conversion is
successful. r.0 contains -2 if TSM could not allocate enough space in script
memory to store the result.

Example In the following example, the script plays the system date and time, then says
“good-bye” and hangs up. Note that phrase numbers for the days of the
week and month of the year in the stdspch.pl play file are offset from “sunday”
and “january” by the values obtained in TM_WDAY and TM_MON,
respectively.

#define TM 8
#define TM_SEC 8/* seconds after the minute (0-59) */
#define TM_MIN12/* minutes after the hour (0-59) */
#define TM_HOUR 16/* hour since midnight (0-23) */
#define TM_MDAY 20/* day of the month (1-31) */

1.UnixWare is a registered trademark of The Santa Cruz Operation, Inc.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 427

#define TM_MON 24/* months since January (0-11) */
#define TM_YEAR 28/* years since 1900 */
#define TM_WDAY 32/* days since Sunday (0-6) */
#define TM_YDAY 36/* days since January 1st (0-365) */
#define TM_ISDST 40/* flag for daylight savings time */

/* (non-zero if alt. timezone in effect) */

#define WKDAYPH 44
#define MONTHPH 48

tfile("stdspch.pl")
dtitos(time.0, ch.TM)
tic(’a’)
talk("date")
load(int.WKDAYPH, "sunday?")
incr(int.WKDAYPH, int.TM_WDAY)
talk(int.WKDAYPH)
load(int.MONTHPH, "january")
incr(int.MONTHPH, int.TM_MON)
talk(int.MONTHPH)
tnum(int.TM_MDAY)
tnum(19)
tnum(int.TM_YEAR)
sleep(2)
talk("time")

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 428

tnum(int.TM_HOUR)
tnum(int.TM_MIN)
sleep(2)
talk("goodbye")
quit()

See Also dtstoi

dtstoi

Name The dtstoi instruction converts the date and time from the “tm” structure to a
UnixWare system internal form.

Synopsis dtstoi(type.src, type.dst)

Description The dtstoi instruction converts the “tm” structure specified by the type.src
argument and converts it to the internal UnixWare system representation.
The result is placed in type.dst. An integer type should be used for type.dst.
This instruction is the complement to the dtitos instruction.

The dtstoi instruction returns 0 in script register 0 (r.0) if the conversion was
successful. A value of -1 is returned in r.0 if the “tm” structure indicated by
type.src contains incorrect values or is at a location outside the script data
area.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 429

Example In the following example, the script fragment gets the current system date
and time, truncates the hour to midnight, and converts the result back to
UnixWare system time stored at location MIDNGT.

#define TM 8
#define TM_SEC 8/* seconds after the minute (0-59) */
#define TM_MIN 12/* minutes after the hour (0-59) */
#define TM_HOUR 16/* hour since midnight (0-23) */
#define TM_MDAY 20/* day of the month (1-31) */
#define TM_MON 24/* months since January (0-11) */
#define TM_YEAR 28/* years since 1900 */
#define TM_WDAY 32/* days since Sunday (0-6) */
#define TM_YDAY 36/* days since January 1st (0-365) */
#define TM_ISDST 40/* flag for daylight savings time */

/* (non-zero if alt. timezone in effect) */
#define MIDNGT 44
...
dtitos(time.0, ch.TM)
load(int.TM_HOUR, 0)
dtstoi(ch.TM, int.MIDNGT)

See Also dtitos

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 430

event

Name The event instruction causes a subroutine call when defined events occur.

Synopsis event(event_type[, subroutine_label])

event(event_type[, type.offset])

Description The event script instruction causes a jump to the subroutine_label given
when events defined by the event_type argument occur. The event types are
defined in the header file /att/msgipc/tsm_dip.h.

If valid arguments are passed, the event instruction returns an integer offset
in register 0 (r.0). This offset is the value of the previous subroutine_label (if
any) used for the event. It may be saved and used later as the type.offset
argument to the event instruction to reset the subroutine_label back to its
previous value. (This is useful for external script functions that need to
handle events and want to restore their disposition to whatever the calling
script had set before returning.)

If event_type is not valid or type.offset is larger than the text space of the
script, a value of -3 will be returned by the event instruction.

A negative value for type.offset may be used to set no subroutine label for an
event, causing the default action to be taken when the event occurs (see
below). If no subroutine_label or offset is given, the event instruction returns
in r.0 the value of the subroutine_label currently being used (or -1 if none)
without changing the disposition for the event.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 431

The event types are as follows:

• EHANGUP — Hangup event. This event is triggered when dial tone, no
loop current, disconnect, or glare conditions are detected on the channel.
The register value passed to the event subroutine is EHANGUP for r.0. If
no event subroutine is set for this event, the script exits as if the quit
instruction were used.

• EDIALTONE and ESTUTTERDT— Dial tone event. These are special
cases of the EHANGUP event. Normally, EHANGUP is triggered when
dial tone or stutter dial tone is detected (and the script is not expecting
dial tone). EDIALTONE and ESTUTTERDT are used to treat dial tone
detection separately from EHANGUP. If both EHANGUP and
EDIALTONE/ESTUTTERDT are set with the event instruction to call
different interrupt routines, EDIALTONE/ESTUTTERDT must be set
following EHANGUP.

The register value passed to the event subroutine is EDIALTONE for r.0.
If no event subroutine is set for this event, the script exits as if the quit
instruction was used.

• ESOFTDISC — Soft disconnect event. This event is triggered by sending
a SOFT_DISC message to TSM from a DIP (see /att/msgipc/tsm_dip.h).
This message is acknowledged with a SOFT_DPASS message before the
event subroutine is called. Note that if the channel specified by the
SOFT_DISC message is idle, a SOFT_DFAIL message is returned.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 432

If an event subroutine is set, it receives the following values when the
event occurs:

If no event subroutine is set for this event, the script exits as if the quit
instruction were used.

• EDIPINT — DIP interrupt event. This event can be triggered by sending a
DIP_INT message from a DIP to TSM (see /att/msgipc/tsm_dip.h). The
DIP_INT message is not acknowledged.

If an event subroutine is set, it will receive the following values when the
event occurs:

r.0 Event type (ESOFTDISC)

r.1 Value from arg[1] of SOFT_DISC message

r.2 Value from arg[2] of SOFT_DISC message

r.3 Number of the DIP that sent the SOFT_DISC message

r.0 Event type (EDIPINT)

r.1 Value from arg[1] of DIP_INT message

r.2 Value from arg[2] of DIP_INT message

r.3 Number of the DIP that sent the DIP_INT message

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 433

If no event subroutine is set for EDIPINT, TSM ignores the DIP_INT
message and the script continues to run.

• ETTREC — Touch tone received event. This event can be used to allow
a dbase, sleep, tflush, talkresume or tic instruction to be interrupted if a
touch tone is received while they are being executed. Note: The tflush
instruction is only interrupted if its first argument is 1 (“talkoff” is disabled).

If an event subroutine is set, it receives the following values when the
event occurs:

If no event subroutine is set for ETTREC, the instructions are not
interrupted by touch tones.

r.0 Event type (ETTREC)

r.1 Touch-tone character that caused the interrupt

r.2 Number of touch tones received since last getinput,
getdig, or ttclear

r.3 Instruction interrupted ’t’ - tflush or talkresume, ’s’ - sleep,
’d’ - dbase,
’i’ - tic

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 434

• EANSSUP — Answer supervision event. This event is triggered when
answer supervision is detected for an E1, T1, or PRI channel.

The register value passed to the event subroutine is EANSSUP for r.0. If
no event subroutine is set for this event, the event is not triggered and the
script continues to run.

• ERESOURCE — Resource removed event. This event is triggered when
a resource that has been explicitly allocated with the resource_alloc()
instruction is removed due to a maintenance process.

If an event subroutine is set, it receives the following values when an
event occurs:

r.0 Event type (ERESOURCE)
r.1 Removed resource capability value (see resource_alloc())
r.2 Removed resource implementation value (see resource_alloc())

If no event subroutine is set for ERESOURCE, the script will not be
notified of removal of explicitly allocated resources.

Note: If an explicitly allocated resource is removed, the system will still
attempt to dynamically allocate the resource for the script on an
"as needed" basis (as if the resource_alloc() instruction were
never used).

The DIP number stored in r.3 for ESOFTDISC and EDIPINT events is the
same value used by the dbase and dipterm instructions. It can be used
directly by those instructions in the event subroutines, if desired.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 435

Return from an event subroutine is handled the same for all events. If the
event routine causes a wait condition, any previous wait condition will be
forgotten. If the event routine sets r.0 to a negative value before returning
(with the rts instruction), any previous wait condition will be aborted. The wait
causing instruction then returns immediately with r.0 still set to that negative
value. In most cases, this simulates a failure condition for the interrupted
instruction. If r.0 is not negative when the event routine returns, the script
continues to wait for the expected condition before it continues. When the
event routine returns, all registers except r.0 are restored to the values they
had before the event. Events of different types may be nested. A new event
is ignored if an event of the same type is being handled already. The
EDIALTONE event also is ignored while EHANGUP is being handled.

Examples Example 1

The following example shows when a hangup is detected, the script calls the
subroutine hangup which records the time in event data space and exits.

#define ATD_TIME 24

MAIN:
tfile("list.atd_mgmt")
event(EHANGUP, hangup)
...

hangup:
load(ev.ATD_TIME, time.0) /*Record time attendant becomes free*/
...
quit()

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 436

Example 2
The following example shows that when a touch tone is detected during the
tflush(1) instruction, the script stops the play only if the touch-tone digit is a
’#’. Note that any received digits are not removed from the script’s touch-tone
buffer unless a getinput, getdig, or ttclear instruction is done.

MAIN:
...
event(ETTREC, L_tkoff)
talk("something")
tflush(1)
/* tflush will return a -5 in r.0 if talkoff (# only) */
...
event(ETTREC, -1) /* reset event */

...

L_tkoff

jmp(r.3 !=’t’, L_notkoff) /* not tflush */
jmp(r.1 !=’#’, L_notkoff) /* not # digit */
tstop()/* stop play */
load(r.0, -5) /* abort tflush() */
rts()

L_notkoff:
load(r.0, 0) /* continue instruction wait */
rts()

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 437

exec

Name The exec instruction allows a script to start another script.

Synopsis exec(ctype.src[,type.data,type.nbytes][,exitval])

Description The exec instruction allows a script to execute another script.

The ctype.src argument is the name of the script to be executed. The
type.data and type.nbytes arguments are used to pass a block of data to the
new script. The type.data argument specifies the location of the data, and
type.nbytes specifies the size in bytes of that data. If type.data is a register or
immediate type, type.nbytes is ignored and the size of an integer (4 bytes) is
assumed. These two optional arguments work like the last two arguments of
the dbase instruction. The exitval argument is an optional exit value that will
be used when the “parent” script is terminated before the new “child” script is
run. It is used in the same way as the argument to the quit script instruction
and may be specified without specifying the type.data and type.nbytes
arguments. If no exitval is given, -1 is used by default.

The exec instruction only returns if the script name specified is invalid or the
size of the data being passed exceeds the 2-Kbyte default limit. In these
cases, register 0 is set to -1. Otherwise, the script exits and the following
actions are performed:

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 438

• If the exitval used is 0 or negative or if no exitval is given, a CALLDATA
message is sent to CDH (as is done when the quit instruction is called).
However, if the exitval is greater than 0, the CALLDATA record is not
written to CDH. In this case, the start time of the call is preserved for the
next script, which may send the record out when it executes another exec
or a quit. CALLDATA events cannot be preserved across an exec since
each script may define those events differently.

• SCRIPTTERM messages are sent to all DIPs for which the dipterm
instruction was executed by the script. An array of four long integers is
passed as data with the SCRIPTTERM message. The first of these is set
to NORMALTERM in the case of quit but is set to EXECTERM in the
case of exec (see tsm_dip.h). The second integer in the array is set to
whatever value is given to the quit instruction or in the exitval argument to
the exec instruction. In each case, it is set to -1 if this value is not
provided.

Normally, TSM sets all script registers to zero (0) when a new script starts.
When a script is run with exec, however, the register values set by the old
script are preserved for the new script. If any speech has been queued with
the talk, tnum, tchar, or say instruction, the exec causes this speech to be
played before the new script is executed.

The system monitor shows the transition when a new script is executed by
displaying the new script name under the “Voice Service” heading for the
channel. The number under the “Calls Today” heading is not incremented
when a new script is started with exec unless the new script executes a
tic(’a’) instruction.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 439

As was mentioned previously, the optional second and third arguments to
exec may be used to pass a block of data to the new script. This data is not
stored in the user data space of the script because that space is usually freed
and the new script’s data space takes its place. This means that the new
script cannot access the passed data directly as a script variable. Instead a
new access code argument, “X.0”, was introduced to reference this data and
some existing instructions have been modified to support this code. The X.0
code may be used as the second argument to the strcpy instruction to copy
the exec data into the script’s data space. When this argument is used,
strcpy performs a block copy of the exec data to the place specified by the
first argument to strcpy. Enough space should be set aside by the script to
accommodate the data. Strcpy uses the size that was passed by the exec
instruction in copying the data. It does not look for a null character at the end
of the data, as is done normally.

The strcmp and strlen instructions also accept X.0 for their arguments. In
this case, strcmp does a byte-by-byte comparison using the size of the exec
data as a limit (instead of looking for a null-character termination) and returns
in register 0 a value with the same meaning as strcmp has had previously
(that is, a value less than, equal to, or greater than zero depending on
whether the data indicated by the first argument is lexicographically less than,
equal to, or greater than that indicated by the second argument). Strlen
simply returns in register 0 the size of the exec data as it was passed to the
exec instruction.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 440

The exec data also may be passed directly to a DIP by using the X.0 code as
the fifth argument to the dbase instruction. The sixth argument indicating the
size is ignored in this case since TSM will use the size originally passed to
exec. The exec instruction similarly supports the X.0 code for its type.data
argument. The type.nbytes argument also is ignored in this case.

These instructions are the only ones that have been modified to support the
X.0 argument code. The TAS script compiler has been changed to do some
checking of the arguments to the dbase and strcpy instructions to ensure that
X.0 will not be allowed for the first argument of strcpy and the third argument
to dbase. There has been no effort made to do such checking for any other
instruction; use of X.0 elsewhere may have unpredictable results.

Example The following example quits the script with an exit value of 1 and starts
executing the “test.script” script.

exec("test.script",1)

See Also dipterm
execu
subprog
quit

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 441

execu

Name The execu instruction allows a script to start another script.

Synopsis execu(ctype.script[,type.data,type.nbytes][,exitval])

Description The execu instruction has the same format and functionality as exec. Using
execu instead of exec, however, causes the new script to inherit the data
space of the “parent” script intact. Essentially, this feature allows a script to
pass all its data to the new script. For this to be useful, however, the new
script must have its data defined in the same way as the parent script (that is,
structures, variables, etc. must be defined for the same locations). The data
definition of the new script will be used to overlay the actual data of the parent
script.

Example The following example quits the script with an exit value of 1 and starts
executing the “test.script” script.

execu("test.script",1)

See Also exec
subprog

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 442

extend

Name The extend executes customer defined C language functions on behalf of
TAS scripts.

Writing a script that uses this instructions also requires knowledge of C
language programming and some basic knowledge of the IRAPI.

Synopsis #include “irapi.h”
extend(type.src)

Description The extend instruction differs from all other TSM instructions in that customer
written C language functions are executed. Moreover, there are many
contexts from which the customer C language functions may be executed.

The TSM process executes (optional) TAS instruction specific code in each
of the following contexts: at TSM process initialization, at script start up, at
script exit, at TSM process termination, upon receipt of SIGUSR1, and during
execution of an instruction from within script.

During TSM process initialization the TSM program calls:

irExtendInit(0)

The irExtendInit (3IRAPI) function executes all functions in the IRAPI
dynamic switch table Iri_ExtendInit_table via a call to irVADynSwitchAll (
3IRAPI).

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 443

The return codes from the functions in this dynamic switchtable are always
ignored and do not affect the behaviour of IRAPI or TSM.

When TSM first starts executing a script the TSM program calls:

irExtendStart(0, cid, script)

where

• cid is the channel ID

• script is a string name of the script

The irExtendStart(3IRAPI) function executes all functions in the IRAPI
dynamic switch table Iri_ExtendStart_table via a call to
irVADynSwitchAll(3IRAPI).

The return codes from the functions in this dynamic switch table are always
ignored and do not affect the behaviour of IRAPI or TSM.

When TSM encounters the extend instruction in a TAS script the TSM
program calls:

irExtendExecute(id, cid, script, reg)

where

• id is an integer value corresponding to the argument passed to the extend
instruction

• cid is the channel ID on which the script is running

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 444

• script is a string name of the script

• reg is an array of IRD_NUMREG longs corresponding to the TSM
registers for this script.

The irExtendExecute(3IRAPI) function returns the value returned by the
customer defined C-language function. If irExtendExecute returns IRR_OK,
then extend sets Register 0 to 0. If irExtendExecute does not return IRR_
OK, then extend sets Register 0 to -1.

The customer defined C-language function may get and set any of the IRD_
NUMREG registers passed to it. The TSM program will set Register 0 to
either 0 or -1, according to the return code of the C language function
executed, therefore that register should not be written to.

The new IRAPI parameter IRP_EXTEND_BUF is a character buffer of 2048
bytes. The TAS script instructions setIRAPIparamstr and
getIRAPIparamstr may be used to get or set this IRAPI parameter. The
customer defined C-language functions executing in the context of the
extend instruction may use the IRAPI functions irSetParamStr and
irGetParamStr to get or set this IRAPI parameter.

When TSM terminates a script program the TSM program calls:

irExtendExit(0, cid, script)

where

• cid is the channel ID

• script is a string name of the script

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 445

The irExtendExit(3IRAPI) function executes all functions in the IRAPI
dynamic switch table Iri_ExtendExit_table via a call to
irVADynSwitchAll(3IRAPI).

The return codes from the functions in this dynamic switch table are always
ignored and do not affect the behaviour of IRAPI or TSM.

When TSM process quits the TSM program calls:

irExtendQuit(0)

The irExtendQuit(3IRAPI) function executes all functions in the IRAPI
dynamic switch table Iri_ExtendQuit_table via a call to
irVADynSwitchAll(3IRAPI). The return codes from the functions in this
dynamic switch table are always ignored and do not affect the behavior of
IRAPI or TSM.

When TSM process receives a SIGUSR1 the TSM program calls:

irExtendTrace(0)

The irExtendTrace(3IRAPI) function executes all functions in the IRAPI
dynamic switch table Iri_ExtendTrace_table via a call to
irVADynSwitchAll(3IRAPI). The return codes from the functions in this
dynamic switch table are always ignored and do not affect the behavior of
IRAPI or TSM.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 446

There are some limitations on what can be done within the functions called by
the extend instruction. TSM is a multi-threaded application, with one thread
of execution per channel. Because of this C-language functions written for
the extend instruction must be able to execute in the context of many
channels.

Memory allocation, initialization and access to data structures may need to
be done on a per channel basis. After TSM completes execution of an
instruction TSM is free to execute another instruction for that script, or it may
suspend execution of the script and execute an instruction in another script.
Therefore no assumptions should be made that two extend instructions
immediately following each other will indeed be executed immediately one
after the other.

There are two other constraints on the C-language functions executed by the
extend instruction. These functions must not generate IRAPI events. TSM
will not know what to do with these events, and they will be discarded. These
functions must not consume so much time that they cause TSM to fall behind
in processing its event queue. Any time consuming operations, such as
database operations or network communication, must not be done with this
mechanism. Use a DIP for any time consuming processes; do not use the
extend instruction.

The primary purpose of the extend instruction is to allow TSM to execute fast
C-language functions that would otherwise be difficult or impossible to write
in the TAS script language.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 447

Lucent Technologies cannot guarantee add-on packages implementing
extend instructions written by other than Lucent Technologies will work
correctly, or without damage to your system.

Examples In the following section several sample scripts calling extend instructions are
presented in detail. All these examples are on-line in the directory
/vs/examples/IRAPI.

Example 1

/*
* FUNCTION:
* get_rand - get the value returned by rand()
* and store it in the passed in integer buffer
*
* INPUT: integer buffer to store random number
*
* RETURNS: return code from extend(TSM)
*/
#include "irapi.h"
DEFARG_COUNT(1)
DEFARG(rand,num,both) /*passed in via r.3 */
L__get_rand:

extend(IRX_RAND) /*set r.1 to rand() */
load(*int.3, r.1) /*set script parameter to r.1 */
rts() /*return to script */

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 448

Example 2

/*
* FUNCTION:
* get_lbolt - get the irLBolt(3IRAPI) value and store it
* in the passed in integer buffer
*
* INPUT: integer buffer to store irLBolt() return value
*
* RETURNS: return code from extend(TSM)
*/
#include "irapi.h"
DEFARG_COUNT(1)
DEFARG(lbolt,num,both) /*passed in via r.3 */
L__get_lbolt:

extend(IRX_LBOLT) /*set r.1 to irLBolt() */
load(*int.3, r.1) /*set script parameter to r.1 */
rts() /*return to script */

Example 3

/*
* FUNCTION: get_time - get current time()
*
* OUTPUT:
* time: time in seconds since midnight 1/1/70 UTC
*/

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 449

#include "irapi.h"
DEFARG_COUNT(1)
DEFARG(time,num,both) /* passed in via r.3 */
L__get_time:

extend (IRX_TIME)
load (*int.3, r.1)
rts()

Example 4

/*
* FUNCTION: get_ctime - get the ctime() equivalent of
* the time, e.g., "Thu Sep 25 12:25:48 1997"
*
* INPUT:
* destination: field that result is placed in
* time: time in seconds since midnight 1/1/70 UTC
*/
#include "irapi.h"
DEFARG_COUNT(2)
DEFARG(destination,char,out) /* passed in via r.3 */
DEFARG(time,num,in) /* passed in via r.2 */
L__get_ctime:

load (r.1, r.2)
extend (IRX_CTIME)
/* get string up to but not including the \n */

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 450

getIRAPIparamstr(IRP_EXTEND_BUF, *ch.3, 24)
incr (r.3, 24)
load (r.3, 0) /* null terminate the string */
rts()

Install Sample Scripts

Use the following procedure to install the example scripts above:

1 At the UNIX system prompt, enter stop_vs

2 Enter cd /vs/examples/IRAPI

3 Enter make -f example.mk libirUTIL.so

4 Enter make -f example.mk get_lbolt get_time get_rand get_ctime

5 Enter cp libirUTIL.so /usr/lib/libirUTIL.so

6 Enter editSPIlibs /usr/lib/libirUTIL.so

7 Enter start_vs

The scripts are now available through the Script Builder external function
mechanism.

The C-language functions implementing these extend instructions are on-line
in /vs/examples/IRAPI/util_fcns.c

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 451

For complete information on how to write C-language functions to implement
an extend instruction see the following manual pages:

 irExtend(3IRAPI)
 IrEXTEND(4IRAPI)
 IrDEFINES(4IRAPI)
 IrPARAMETERS(4IRAPI)
 irDynSwitch(3IRAPI)
 irRegister(3IRAPI)
 irSPIRegister(3IRAPI)
 irSPI.libs(4SPI)
 editSPIlibs(1SPI)
 irName(3IRAPI)
 irDefine(3IRAPI)
 irErrorStr(3IRAPI)
 dlopen(3)
 dlsym(3)

getinput

Note: The getinput instruction replaces the getdig instruction.
Continued use of the getdig instruction is discouraged.

Name The getinput instruction receives touch-tone, dial-pulse, or spoken input
from a caller.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 452

Synopsis getinput(ctype.dst, type.number[, int.recognizer[, int.resource]])

Description The getinput instruction manages the process of starting speech
recognizers, flushing speech, and collecting input. The behavior of getinput
is summarized as follows:

1 Start all recognizers queued for recognition while prompting (see recog_
start).

2 Flush (start output of) all queued speech or text (see say, talk, etc.).

3 When speech/text output is complete, start all recognizers queued for
start after prompting.

4 If at any point a recognizer successfully reports input, all remaining play
and recognition activities are terminated and getinput returns with the
number of characters placed on the input stream.

The argument ctype.dst is a character buffer where input data is to be copied.
The argument type.number indicates the maximum number of input
characters to copy to ctype.dst. The optional argument int.recognizer
indicates the address of the integer value where the recognition type used to
collect input is stored. Possible values include 0 for TT input or some positive
integer indicating a recognizer such as IRD_WHOLE_WORD (see recog_
start). The optional argument int.resource indicates the address of an
integer where the resource used to perform recognition is stored.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 453

When getinput is used with multiple simultaneous recognizers, all other
recognizers are terminated upon receipt of input from any source and only
the results from the first recognizer are reported back to the application. The
getinput instruction assumes that DTMF (touch-tone) recognition is always
on. DTMF recognition can be inhibited with the use of ttmask and ttintr.

The getinput instruction has a 10-second default initial digit wait time for
input. If the caller does not enter a digit within the allotted time period,
getinput returns the number of digits received before the timeout occurred.
Use the tttime() instruction to specify desired wait times.

The getinput instruction is a wait-causing instruction. Therefore, it
automatically forces out any pending or unfinished announcements from this
channel.

Return Values The return value from getinput is placed in r.0 as follows:

• r.0 > 0 — Indicates that getinput successfully received r.0 digits and
copied the input to ctype.dest.

• 0 — Indicates an initial timeout occurred for all recognizers.

• -1 — Indicates that all resources are busy. This may include recognition
resources or play resources if such operations were previously queued
with the recog_start or talk instructions.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 454

• -2 — Indicates that no resources exists to perform the input operation.
This may include recognition resources or play resources if such
operations were previously queued with the recog_start or talk
instructions.

• -3 — Indicates a system error has occurred.

• -4 — Failed to access a memory location specified via an argument.

Example In the following example, the script waits for the caller to enter up to 10 digits,
then stores them in ch.ANS. The type of recognition used is stored in
int.recognizer.

getinput(ch.ANS, 10, int.recognizer)

See Also getdig
tttime
recog_start
recog_cntl

getIRAPIparam, getIRAPIparamstr

Name setIRAPIparam, setIRAPIparamstr, getIRAPIparam, getIRAPIparamstr -
set/get the value of a IRAPI library channel-based parameter

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 455

Synopsis #include <irapi.h>
getIRAPIparam (identifier,type.dest)
getIRAPIparamstr (identifier, ctype.dest, type.count)
setIRAPIparam (identifier, type.value)
setIRAPIparamstr (identifier, ctype.string, type.count)

Description The setIRAPIparam and setIRAPIparamstr functions assign values to an
IRAPI library parameter, while getIRAPIparam and getIRAPIparamstr get
the current value of a parameter. See IrPARAMETERS(4IRAPI) for a list of
valid parameters and their default and legal values.

getIRAPIparamstr returns exactly count bytes of data to the area specified
by value. Since some string parameters are actually blocks of data, such as
IRP_REGISTER, getIRAPIparamstr ignores any null characters in the
parameter data. It also makes no attempt to null terminate the string.
setIRAPIparamstr also ignores null characters and copies the number of
bytes for the parameter [specified in IrPARAMETERS(4IRAPI) or through
count] into the call profile. setIRAPIparamstr copies only count bytes of data
beginning at the address specified by value, therefore, value need only point
to an area of size count.

Parameters are preserved across exec boundaries.

Return Values getIRAPIparam, getIRAPIparamstr, setIRAPIparam, and
setIRAPIparamstr return 0 in register 0 (r.0) if successful and return -1 in
register 0 (r.0) if an error occurs.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 456

See Also IRAPI manual pages: irParams(3IRAPI), IrPARAMETERS(4IRAPI),
irGlobalParam(3IRAPI)

goto

Name The goto instruction unconditionally branches to a label.

Synopsis goto(<label>)

Description The goto instruction is an unconditional jump to the instruction indicated by
the label.

Example In the following example, the goto instruction implements if-then logic to
avoid the fall-through condition. As shown in the first block of code, the
instruction jumps to no_value if true, but must avoid that block of code if
false. A goto instruction is also used as a direct path out of a block of code.

jmp(r.1 <= 0, no_value)
talk("the value is positive")
goto(next_block)

no_value:
 talk("the value is not positive")

next_block:

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 457

See Also jmp
case

hbridge

Name The hbridge instruction directs the current channel to bridge partially to
another channel.

Synopsis hbridge(type.src,type.src)

Description The hbridge instruction directs the current channel to bridge partially to
another channel. The result is that the audio coming in on the specified
channel is heard or dropped by the calling party (current channel). The
specified channel does not hear the calling party. The current channel does
not hear voice responses or other background audio on the specified
channel.

The first type.src argument is a valid channel number. The second type.src
argument is either 1 to add the specified channel or 0 (zero) to drop the
channel. Values for the channel numbers and the add/drop flag follow the
conventions for all type.src arguments.

If the hbridge instruction is not successful, a negative value is returned to
register 0. The following are conditions under which the hbridge instruction
may fail:

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 458

• Hbridge attempt to the current channel

• Channel reached limit for listen tie slots (7 maximum per channel)

• System call failure

Example #define ADD 1
#define DROP 0
#define OTHCHAN17

hbridge (OTHCHAN,ADD)
hbridge(OTHCHAN,DROP)

hundsec

Name The hundsec instruction gets the system time in hundredths of a second.

Synopsis hundsec(type.dst)

Description The hundsec instruction loads the integer type.dst with the system time in
hundredths of a second.

Note: Do not use the hundsec instruction in a loop to insert delays in
script execution. Use the sleep or nap instructions instead.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 459

Example In the following example, HSEC2 contains the duration of the dbase call in
hundredths of a second.

#define HSEC1 10
#define HSEC2 14

...

 hundsec(int.HSEC1)
dbase(DIP, GET_DATA, ch.SENDBUF, 20, ch.RCVBUF, 100)
hundsec(int.HSEC2)
decr(int.HSEC2, int.HSEC1)

ibrl

Name The ibrl instruction increments a counter and branches to a label if one is
less than the other.

Synopsis ibrl(type.dst,type.src,<label>)

Description The ibrl instruction is intended for loop control by testing for equality of two
variables. It determines whether to make another pass through a loop or to
execute the next sequential instruction. The destination value is incremented
by one, and then compared to the source value. If type.dst is less than
type.src, execution jumps to the labeled instruction.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 460

Example In the following example, after doing some other tasks, r.3 is increased by 1
and compared with r.1. If r.3 is less than r.1, the loop is repeated at the label
SW1_CTRL; otherwise, the next instruction is executed which takes the
program to end_loop.

SW1_CTRL:

 ibrl(r.3,r.1,SW1_CTRL)

end_loop:

incr

Name The incr instruction increases a value.

Synopsis incr(type.dst,type.src)

Description The incr instruction increments the type.dst value by the type.src value.

Example The following example increases the event counter 2 by 1.

incr(ev.2,1)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 461

itoa

Name The itoa instruction converts an integer to an ASCII string.

Synopsis itoa(ctype.dst,type.src)

Description The itoa instruction converts a numeric type.src value to a null-terminated
character string stored starting at ctype.dst.

Example In the following example, a numeric value in r.2 is written at the address
labeled ISIZE as a null-terminated character string.

itoa(ch.ISIZE,r.2)

jmp

Name The jmp instruction jumps to a label if the condition true.

Synopsis jmp(type.src rel_op type.src,<label>)

Description The jmp instruction is a conditional jump to the labeled instruction. The
values of the two source operands are compared as specified by the
relational operator.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 462

Example The following example directs the script to go to the attendant subroutine if
ch.0 contains * and to go to the BYE subroutine if ch.0 contains #.

jmp(*ch.0==’*’,attendant)
jmp(*ch.0==’#’,BYE)

See Also goto

label

Name This is a subroutine call.

Synopsis <label>([type.src] [,type.src])

Description The label() subroutine call is used to call a subroutine found at the address
indicated by the label. A return address and the values in all registers except
r.0 are saved on a subroutine stack in the calling subroutine. The optional
first and second arguments are stored in r.3 and r.2, respectively.

Example In the following example, the integer variables FIRST and SECOND are set
equal to 1 and 2, respectively. The subroutine ADDEM is called with two
arguments.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 463

Within ADDEM, the variable SUM is set to zero. Then the value of SUM is
incremented by r.3 (which has been assigned the value of FIRST from the
calling routine) and incremented by r.2 (which has been assigned the value of
SECOND from the calling routine.

The subroutine return (rts) returns control to the tnum instruction following the
ADDEM subroutine call.

load(int.FIRST,1)
load(int.SECOND,2)
ADDEM(int.FIRST,SECOND)
tnum(int.SUM)

ADDEM()

 load(int.SUM,0)
 incr(int.SUM,r.3)
 incr(int.SUM,r.2)
 rts ()

See Also case

listenall

Name The listenall instruction listens to all audio input on a specified channel.

Synopsis listenall(type.src, type.src)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 464

Description The listenall instruction listens to all audio input on a specified channel.
Audio input includes normal voice responses to the network. The specified
channel does not hear any audio from the current channel. This allows
administrators to monitor the channel.

The script with the call to listenall must be kept running until the caller is
finished monitoring the audio input on the other channel. One way to
accomplish this would be to add a call to sleep directly after listenall
command.

For example:

listenall (45, ADD)
sleep (45)

These commands keep the monitor script running for 45 seconds after the
script starts. You must determine how long the other channel will be
monitored and use the appropriate sleep value.

The first type.src argument is a valid channel number. The second type.src
argument is either 1 to add the channel or 0 (zero) to drop it. These
arguments must follow the conventions for type.src arguments discussed in
Chapter 3, TAS Script Instructions.

If the listenall instruction is successful, a positive value is returned to
Register 0. If the listenall instruction is not successful, a negative value is
returned to Register 0.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 465

The following are reasons the listenall instruction might fail:

• Attempt to monitor current channel

• Attempt to monitor more than one channel

• Channel reached limit for listen time slots (maximum of 7 per channel)

• System call failure

Note: If the listenall instruction hears a dialtone, it will hang up.

Example #define ADD 1
#define DROP0
#define OTHCHAN17

listenall(OTHCHAN,ADD)
listenall(OTHCHAN,DROP)

load

Name This script instruction moves data.

Synopsis load(type.dst,type.src)

Description The load instruction converts the source value to the data type of the
destination and stores it at the destination.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 466

Example In the following example, the 4-byte value defined by the name NSTKS is put
in r.1. The value 3 is written to r.2.

load(r.1,NSTKS)
load(r.2,3)

mul

Name This script instruction multiples a value.

Synopsis mul(type.dst,type.src)

Description The mul instruction multiples the type.dst value by the type.src value and
stores the result in the destination.

Example The following example multiplies the event counter 2 by 4.

mul(ev.2,4)

nap

Name This script instruction causes the script to sleep.

Synopsis nap(type.src)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 467

Description The nap instruction makes the script do nothing for the specified number of
centiseconds (hundredths of a second). See the event instruction for TSM
events that may interrupt the nap instruction before the specified time has
passed. Unlike the sleep instruction, the nap instruction does not flush
queued speech before the nap is done.

Example In the following example, the script dials out on a channel, then waits 15
centiseconds for completion of the dial before continuing.

tic(‘d’,int.PHONENBR)
nap(15)

See Also event
sleep

no_rts

Name This script instruction pops the subroutine stack.

Synopsis no_rts()

Description This script instruction is the mechanism for popping the subroutine stack
without returning from a subroutine call. The values for all registers are
unaffected by no_rts().

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 468

Example In the following example, TSM pops the stack but continues with the next
instruction instead of returning from the subroutine. The register tracing
shows that register values remain unchanged with no_rts(), but they are
restored, except for r.0, with rts().

trace(1, "begin")

load(r.0, 100)
load(r.15, 115)

trace(1000, r.0)
trace(1015, r.15)

SUBR()

trace(2, "returned from SUBR")

trace(6000, r.0)
trace(6015, r.15)

rts() /* should fail, stack is empty */

quit()

NORETURN:

trace(3, "no return from SUBR")
rts() /* should fail, stack is empty */
quit()

SUBR:

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 469

trace(2000, r.0)
trace(2015, r.15)

load(r.0, 200)
load(r.15, 215)

trace(4000, r.0)
trace(4015, r.15)

no_rts() /* replace with no_rts() to see different result */

trace(5000, r.0)
trace(5015, r.15)

goto(NORETURN)

not

Name This script instruction implements a NOT operation on the argument.

Synopsis not(type.dst)

Description The not instruction performs a 1’s complement operation on the argument.

Example In the following example, r.3 is changed to its 1’s complement.

not(r.3)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 470

In the following example, the bits set in FLAG are cleared in r.3.

load(r.2,FLAG)
not(r.2)
and(r.3,r.2)

nwitime

Name This script instruction specifies the amount of time to wait for the next
wait-causing instruction.

Synopsis nwitime(type.src)

Description The nwitime (next wait instruction time) instruction sets the maximum
amount of time the script will wait for the completion of the next wait-causing
instruction. The argument specifies the number of seconds to wait.
Instructions that are affected by nwitime are: background, dbase,
phreserve, sr_talkoff, tic, and tstop.

Example In the following example, the nwitime instruction specifies the maximum
number of seconds the script should wait for host confirmation before
continuing.

ACCT_BAL:
 nwitime(20)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 471

 --
 --
 (query host - dbase())
 --
 --
 talk("Your account balance is")
 tnum(int.FIVE,’f’)
 rts()

See Also dbase
phreserve
tic

or

Name This script instruction implements an OR operation on the arguments.

Synopsis or (type.dst,type.src)

Description The or instruction implements a bitwise OR operation on the arguments.

Example In the following example, bits set in r.3 or FLAG are set in r.3.

or(r.3,FLAG)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 472

phremove

Name This script instruction removes a phrase from a talkfile.

Synopsis phremove(type.phrase,type.talk)

Description The phremove instruction removes the phrase specified by the type.phrase
argument from the talkfile specified by the type.talk argument. The valid
values for type.phrase are 1—65,535. The valid values for type.talk are
1—16,383. Type.phrase must be a valid phrase id. Type.talk may have the
value -1. If type.talk is -1, then the talkfile id used will be the current talkfile.
Do not use a character data type as an argument.

If the phremove instruction is successful, it returns the phrase id of the
phrase removed in register 0. If the instruction is not successful, it returns a
negative value in register 0.

Example In the following example, phrase 205 is removed from talkfile 19.

load(sh.TALKID,19)
phremove(205,int.TALKID)

In the following example, phrase 117 is removed from talkfile 10.

load(ch.TALKF,10)
load(int.PHR,117)
phremove(int.PHR,ch.TALKF)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 473

phreserve

Name This script instruction creates space for a phrase in a talkfile.

Synopsis phreserve(type.phrase,type.talk,type.time,type.style)

Description The phreserve instruction creates an area in a talkfile that is used to store a
phrase and specifies the coding style and rate to be used. This phrase is
later encoded by the vc instruction. The arguments for the phreserve
instruction are:

• type.phrase — Specifies the phrase ID of the phrase to be created (valid
range is 1–65,535)

• type.talk — Specifies the talkfile ID of the talkfile where the phrase is
stored (valid range is 1–255)

• type.time — Specifies the amount of space, or time (in seconds), to be
reserved for the phrase in the talkfile.

• type.style — Specifies the coding style and rate to be used. The coding
styles and rates are defined in the header file codestyle.h. If the coding
style and rate are invalid, the instruction fails. Do not use character data
types for any of these arguments.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 474

If type.phrase is -1, the system assigns a phrase ID and returns this id in
register 1. The phrase id can be used to reference the phrase (for example,
in a talk instruction) once it has been coded and stored in the talkfile by the
vc instruction. If type.talk is -1, the system selects a default value (255) for
the talkfile and returns the id of the selected talkfile in register 0.

Note: If there are two phreserve instructions, there must be a vc
instruction between them or the second phreserve instruction will
fail.

When both type.talk and type.phrase are -1, both a phrase ID and talkfile ID
are chosen by the system and returned in registers 1 and 0 respectively.
Since registers 0 and 1 can be used implicitly to store talkfile and/or phrase
IDs, the script writer must take care to save the contents of these registers
before the phreserve is executed.

If type.phrase matches the phrase ID in the specified talkfile, the existing
phrase will be replaced by the new phrase. The value 0 or -1 for the
type.time argument can be used to indicate that the phreserve instruction
should not allocate any space. If enough space is available to store the
phrase when coding ends, the phrase will be stored. If there is not enough
space, an error message will be issued from the vc instruction.

If you add phrase 0 to any talkfile, the phrase is added as phrase 65535 the
first time. If the command is executed again, the phrase is added to the
talkfile as phrase 65534, then 65533, etc.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 475

If the instruction is successfully completed, the return values are:

• Register 0 = talkfile ID

• Register 1 = phrase ID

If the instruction is not successfully completed, the return value in register 0 is
negative.

Note: If the script terminates before vc instruction is used, the space
allocated to the phrase will be freed and the phrase number will be
reused the next time a phreserve instruction is executed. A new
phrase is not stored in the speech file system until a successful vc
is performed.

Example In the following example, an area in talkfile 15 is created to store the phrase.
The ID for the phrase is returned in register 1 and then loaded into location
int.PHRASE. Since type.time is -1, the script writer relies on the system
having enough space to store the phrase. The coding style for the phrase is
ADPCM 32 Kbs.

load(int.TALKID,15)
phreserve(-1,int.TALKID,-1,ADPCM32)
load(int.PHRASE,r.1)

In the following example, 10 seconds (using ADPCM 32 Kbs coding) of
storage are allocated in talkfile 23 for phrase 8.

load(ch.20,8)
phreserve(ch.20,23,10,ADPCM32)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 476

quit

Name This script instruction terminates script instructions.

Synopsis quit([value])

Description The quit instruction specifies the intentional termination of a script. A
dipterm instruction may be defined before using quit, but it is not necessary
for quit to execute. If dipterm is defined, an optional argument can be used.
This optional argument is an integer defined by the script writer. It is sent to
the DIP specified in dipterm and is usually used to notify the DIP why the
script has quit.

Example In the following example, TSM is instructed to send a termination message to
DIP 0 when the script terminates. The script then executes the quit
instruction, ending the script.

dipterm(0)
quit()

See Also dipterm
exec

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 477

recog_cntl

Name This script instruction disables or enables a recognizer.

Synopsis recog_cntl(type.recognizer, type.command)

Description recog_cntl allows an application to control recognizer behavior. The
argument type.recognizer indicates the recognizer to operate on. The
argument type.command indicates the operation to perform on the
recognizer. The following are valid commands:

0 Disables the recognizer. When a recognizer is disabled, it is not queued
for starting when recog_start is called, that is, the call to recog_start is
ignored (will fail) until the recognizer is enabled. This can be useful to disable
DPR to save resources when you know your caller is using touch tones.

1 Enables the recognizer. By default, all recognizers are enabled so
execution of recog_cntl is not necessarily required. When a recognizer is
enabled, it is queued for starting when recog_start is called.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 478

Return Values The disposition of the call to recog_cntl is indicated through register r.0 as
follows:

0 success

-1 (only in the case where command is zero) indicates that the maximum
number of recognizers have been disabled (see IRD_MAX_RECOG in
irDefines.h).

-2 command is not implemented.

See Also recog_start
recog_stop
getinput

recog_init

Name This script instruction initializes training parameters for a recognizer.

Synopsis #include <irDefines.h>
recog_init(type.recognizer)

Description The instruction recog_init initializes training parameters for a recognizer.
The argument type.recognizer is the recognizer to be initialized. Valid
recognizers include IRD_DIALPULSE, IRD_WHOLE_WORD, and IRD_
FLEX_WORD as defined in irDefines.h.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 479

Presently, recognizer initialization is only required for the IRD_DIALPULSE
recognizer and, furthermore, only when line conditions change, such as after
a call transfer. Otherwise the recognizer training parameters are
automatically initialized when the call is started.

Default dial pulse training parameters are used until a dial pulse input of five
of higher is received. Then, training parameters are created, saved, and
used for the duration of this call.

Return Values TSM register r.0 contains 0 on success and a -1 on failure to initialize the
specified recognizer.

See Also recog_start
getinput

recog_start

Name This script instruction queues a recognizer for starting.

Synopsis #include <irDefines.h>
recog_start(type.recognizer, type.recog_type, type.while_prompting)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 480

Description Instruction recog_start queues a recognizer for starting at the next
invocation of getinput. The argument type.recognizer specifies the
recognizer to queue. Valid values include IRD_FLEX_WORD, IRD_
WHOLE_WORD, and IRD_DIALPULSE as defined in irDefines.h. The
argument type.recog_type specifies the type of recognition to use with this
recognizer. For example, a grammar taken from /att/include/sr_grammar.h.
The argument type.while_prompting if true (1), indicates to queue the
recognizer to be started before the prompt begins. If false (0), indicates to
queue the recognizer to be started after the prompt completes. Note that the
echo canceler must have been started earlier via sr_talkoff to recognize
while prompting. If the echo canceler is not running, the recognizer is not
started until after the prompt completes regardless of the value of type.while_
prompting.

Return Values The return value from recog_start is placed in r.0 as follows:

0 Recognizer successfully queued for starting.

.-1 Maximum number of recognizers already queued.

-2 Recognizer has been disabled via a prior call to recog_cntl.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 481

Examples The following example illustrates the construction of a prompt that requests
the caller to enter a 4 digit number. Caller input is accepted as touch-tone,
dial-pulse, or speech. Note that it is not necessary to queue the touch-tone
recognizer since it is implicitly always on.

talk (“enter your 4 digit PIN”)
recog_start(IRD_DIALPULSE, DP_ndig1_10, 1)
recog_start(IRD_WHOLE_WORD, US_4dig, 1)
getinput(ch.ATTNUM, 4, int.RECOGNIZER, int.MODE)

See Also recog_cntl
recog_stop
recog_init
getinput

recog_stop

Name This script instruction unqueues a recognizer.

Synopsis #include < irDefines.h>
recog_stop(type.recognizer)

Description The instruction recog_stop unqueues a recognizer previously queued via
recog_start . The recognizer will not be started upon a subsequent call to
getinput . The argument type.recognizer specifies the recognizer to
unqueue.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 482

Return Values The return value from recog_stop is placed in r.0 as follows:

0 Recognizer successfully unqueued.

-1 Recognizer not previously queued.

See Also recog_start

resource_alloc

Name This script instruction allocates or frees licensed system resources.

Synopsis #include <irDefines.h>
resource_alloc(type.flag, type.capability, type.implementation
[, type.returnMode])

Description The instruction resource_alloc replaces sp_alloc. Continued use of sp_
alloc is discouraged.

The instruction resource_alloc explicitly allocates capability type.capability
of implementation type.implementation to the channel upon which the script
is executed. This allows applications to proceed forth without concern for
resource availability at the expense of inefficient resource utilization
(applications may hold resources that they are not using).

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 483

The argument type.flag if true, indicates to allocate resources, otherwise free
resources. The argument type.capability indicates the capability to allocate
as defined in irResource.h, for example IRC_RECOG, IRC_TTS, etc. The
argument type.implementation indicates the implementation, as defined in
irDefines.h, corresponding to the capability argument. For example, an
implementation of IRC_RECOG is IRD_WHOLE_WORD. The argument
type.returnMode indicates the optional return mode on resource allocation. It
may be one of IRD_IMMEDIATE, IRD_BLOCKFOREVER or some integer N
indicating: return with immediate failure if resources are not available, block
forever (indefinitely) until resources become available, or wait at most N
hundsecs for resources respectively. Defines are in irDefines.h. The default
is the current value of the TSM parameter RESOURCE_RETURNMODE.
RESOURCE_RETURNMODE is set through setparam. By default TSM sets
RESOURCE_RETURNMODE to 10 seconds.

Return Values The return value placed in r.0 as follows:

• 0 — if the resource is successfully allocated

• -1 — if a system error occurs

• -2 — if no resources are in service or

• -3 — if no resources are currently available

See Also sp_alloc

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 484

rts

Name This script instructions returns from a script subroutine.

Synopsis rts()

Description The rts instruction is the mechanism for returning from a subroutine call. The
saved values for all registers except r.0 are restored. r.0 is left at whatever
value it was before the rts instruction.

Example In the following example, after speaking the character string in STKSYM with
a falling inflection and then the phrase “has not opened,” the script goes to
dont_count. The rts in dont_count causes the next instruction to be executed
after the subroutine call in not_opened.

MAIN:

 SR_CALL()

SR_CALL:

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 485

not_opened:
 tchars(ch.STKSYM,’f’)
 talk("has not opened")
 goto dont_count
..........

dont_count

 rts()

say

Name This script instruction plays ASCII text stored in a buffer.

Synopsis say(ctype.src)

Description The say instruction instructs the system to speak ASCII text stored in a
buffer. The ctype.src argument specifies the ASCII text string to be spoken.
The script may pass text as a literally quoted string or the contents of a
null-terminated field (for example, previously populated with a call to the
dbase instruction). The maximum length of a literal string is 2048 characters.

Say is similar to the talk instruction used for phrases of coded speech. The
text passed to say is stored in a buffer that will hold up to 2048 bytes of text.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 486

This buffer is flushed and the text is played when the buffer is full and another
say instruction is executed or when any wait-causing instruction is executed.

The tflush instruction may be used to flush the TTS buffer and cause the text
to play. The first two arguments to tflush (the must_hear_flag and the wait_
indicator) have the same effect for text-to-speech as for coded speech.
(The third argument to tflush, the remember_flag, is not used for TTS.) That
is, the first argument may be used to disable “talkoff” and the second may be
used to play speech and to continue the script without waiting for the play to
complete. Normally, TSM waits for a TTS play to complete before going to
the next instruction. “Spinning off” a TTS play, then executing dbase to get
the next block of text while the first block is playing avoids a delay in play
between the two blocks of text. Scripts may continue executing alternate say,
tflush, and dbase calls in this manner until all the text from a DIP is passed
to say to be played.

The say instruction returns one of following values in script register 0 (r.0)
(Table 23 on page 486):

Table 23. Return Values for the say Instruction

Return Value Return Explanation

0 The say instruction completed successfully

-1 The say instruction failed. This happens if the text passed
to say did not fit into one TTS buffer (2048 bytes).

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 487

As with coded speech, any text-to-speech being played stops when the script
that caused it terminates or executes a tstop instruction.

Examples In the following example, the text for both of the say instructions is sent to the
SSP or SP circuit card for analysis. Eventually, the text is spoken as
synthesized voice.

/* Need to append a space to text continued */
/* in next say() instruction */
say(”For everything there is a season, “)
say(”and a time for every purpose under heaven.”)
tflush()

In the following example, the say instruction uses the DEALER name
obtained in the dbase call for spoken output. Make sure that the DEALER is
not null or the say instruction has nothing to output.

#define DIPmsg 100
#define DEALER 124 /* assuming text is at 24 byte

/* offset in message */

dbase(DIP, GET_DEALER, ch.DIPMSG, 100, 0, 0)
talk(“The name and address of your local dealer is”)
say(ch.DEALER)
tflush()

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 488

scrinst

Name This script instruction determines the number of instances of a script currently
running on the system.

Synopsis scrinst([ctype.script])

Description The scrinst instruction enables an application script to find out how many
instances of a script are running currently on the system. Based on the value
returned by this instruction, the script may choose to prohibit execution of
another instance of the script (via the exec instruction) or the script may quit if
it is performing a check on itself and has exceeded the limit.

The ctype.script optional argument is the script, or service, name. If no script
name is given, the script executing the instruction is assumed. This
instruction sets the value of register 0 (r.0) to the number of instances of the
given script at the time the instruction is invoked.

There are several possible uses of scrinst based on the ways in which a
script may be started:

• Incoming call — It is suggested that the method of limiting the number of
scripts started with an incoming call be left as it is. That is, do not assign
a service to a number of channels greater than the desired limit. If the
number of channels assigned to a script exceeds the limit, a script still
may check the instance count as its first task and quit before answering
the call if the instances exceed the limit.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 489

• exec — The exec script instruction is the primary means by which an
instance limit may be exceeded. Therefore, any application script that is
concerned about running too many instances of another script should use
scrinst for that script before using exec.

In this case, it is important to avoid a wait condition in the interval between
scrinst and exec. This could cause other scripts running simultaneously
that are performing the same test to get identical results from scrinst
before any of them perform the exec instruction. Use tflush before
scrinst to play any speech that is queued. Otherwise, the exec
instruction plays the speech and the script waits for the play to complete
before performing the exec instruction.

• Soft seizure and virtual seizure — Scripts started by a soft seizure or
virtual seizure request from a DIP may use scrinst to check themselves
against an instance limit as their first task, similar to the way scrinst may
be used if the script is started by an incoming call. If the script determines
that it cannot continue, it may signal the DIP that started it by using the
dipterm instruction and calling quit with a specific value that the DIP may
check.

Examples In the first example, the script requests the number of instances of the script
riverbank currently running on the system. In the second example, because
no argument is given, the script requests the number of instances of itself
running on the system.

scrinst("riverbank")
scrinst()

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 490

setalk

Name This script instruction specifies a new talkfile.

Synopsis setalk(type.talk)

Description The setalk instruction is used to specify a new talkfile. This instruction can
be used without first using the tfile instruction. The argument, type.talk, is
the id of the new talkfile. Do not use a character data type as the type.talk
argument.

After setalk is executed, the previous talkfile id is returned in register 0 and
can be saved for future use.

The setalk instruction overrides the talkfile number that is contained in the
first listfile specified in the tfile instruction.

Example In the following example, the new talkfile is set to talkfile 25. The previous
talkfile id is stored at location int.OLDTALK. The phrase number 210 spoken
by the talk instruction refers to the speech phrase encoded in talkfile 25 and
not to the speech phrase listed in list.cabnt.

tfile("/speech/talk/list.cabnt")
setalk(25)
load(int.OLDTALK,r.0)
talk(210)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 491

setattr

Name This script instruction statically sets an attribute associated with a script.

Synopsis #include “tas_defs.h”
setattr (attribute)

Description The setattr instruction statically sets an attribute associated with a script.
Several attributes may be combined by several invocations of setattr.

The attributes that setattr modifies are static and control functions that take
place before a script is started on a channel. It is not possible to vary
dynamically a script’s behavior that is controlled with setattr. Therefore, the
setattr instruction should not be used to set conflicting attributes (for
example, by using both setattr(ATTR_ANI) and setattr(ATTR_SID_0)
instructions).

Valid attributes are:

ATTR_ANIANI only
ATTR_ANI_OANI only
ATTR_ANI_PANI preferred
ATTR_SID_OSID only
ATTR_SID_P SID preferred

Example For example, to set an attribute that requests a station identification (SID) for
the calling party number (CPN), use:

 setattr (ATTR_SID_O)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 492

setcca

Name This script instruction sets the type of Call Classification Analysis (CCA) at
the script level.

Synopsis setcca(type.mode,type.nrings,type.ansdet)

Description The setcca script instruction allows application developers to set Full CCA
parameters at the script level. The parameters that can be set are:

• type.mode — This parameter can be either Intelligent or Full CCA . If
mode is 0 (default), Intelligent CCA is used. If mode is 1, Full CCA is
used (available in US and Canada).

Note: The type.nrings and type.ansdet are not used by Intelligent CCA.

• type.nrings — Number of rings to wait for answer. This parameter can be
between 1–10 rings.

• type.ansdet — Answer detection by voice energy detection. 0 = no, 1 =
yes. The default is -1 (yes for Tip/Ring and LSE1/LST1 lines, no for T1
(E&M), E1 (CAS), and PRI). By default, answer detection is turned on for
Tip/Ring and LSE1/LST1 lines and off for T1 (E&M), E1 (CAS), and PRI
lines because Tip/Ring and LSE1/LST1 lines do not have answer
supervision while T1 (E&M), E1 (CAS), and PRI lines do. Answer
supervision is more reliable in detecting answer than voice energy
detection.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 493

Note: If you use Full CCA as the mode, do not use the tic(’W’,
type.rings) or tic(’w’, type.rings) instruction.

Note: For accurate transfer results, assign Full CCA only to an SP circuit
card.

Example In the following example, the call classification parameters are set to Full
CCA, ten rings, and answer detection is enabled for Tip/Ring and LSE1/LST1
lines and disabled for T1 (E&M), E1 (CAS), and PRI lines.

 setcca(1,10,-1)

The following example is an excerpt from a script showing how a developer
might use the setcca and tic instructions in a Full CCA application.

setcca(1,10,-1)
nextcall:
dbase(....) /* get number to dial from DIP */

tic(‘O’, r.3) /* call number in register 3 */

jmp(r.0 == ’N’, noAns) /* no answer after 10 rings */
jmp(r.0 == ’B’, busy)
jmp(r.0 == ’F’, retry)
jmp(r.0 == ’A’, answer)
jmp(r.0 == ’s’, SIT)
jmp(r.0 == -4, noResource)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 494

noAns:
tic(‘h’) /* put line on-hook to stop ringing */

busy:
dbase (....) /* report result to controlling DIP */
goto (nextcall)

SIT:
jmp(r.1 == ’R’, retry)
jmp(r.1 == ’r’, retry)
jmp(r.1 == ’K’, retry)
jmp(r.1 == ’k’, retry)
dbase (....) /* report result to controlling DIP */

answer:
talk(“Hello, you may be the winner of a free trip to Hawaii”)
dbase (....) /* report result to controlling DIP */
goto (nextcall)

setIRAPIparam, setIRAPIparamstr

Name setIRAPIparam, setIRAPIparamstr, getIRAPIparam, getIRAPIparamstr -
set/get the value of a IRAPI library channel-based parameter.

Synopsis #include < irapi.h>
getIRAPIparam (identifier, type.dest)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 495

getIRAPIparamstr (identifier, ctype.dest, type.count)
setIRAPIparam (identifier, type.value)
setIRAPIparamstr (identifier, ctype.string, type.count)

Description The setIRAPIparam and setIRAPIparamstr functions assign values to an
IRAPI library parameter, while getIRAPIparam and getIRAPIparamstr get
the current value of a parameter. See IrPARAMETERS(4IRAPI) for a list of
valid parameters and their default and legal values.

getIRAPIparamstr returns exactly count bytes of data to the area specified
by value. Since some string parameters are actually blocks of data, such as
IRP_REGISTER, getIRAPIparamstr ignores any NULL characters in the
parameter data. It also makes no attempt to NULL terminate the string.
setIRAPIparamstr also ignores NULL characters and copies the number of
bytes for the parameter [specified in IrPARAMETERS(4IRAPI) or through
count] into the call profile. setIRAPIparamstr copies only count bytes of data
beginning at the address specified by value, therefore, value need only point
to an area of size count.

Parameters are preserved across exec boundaries.

Return Values getIRAPIparam, getIRAPIparamstr, setIRAPIparam, and
setIRAPIparamstr return 0 in register 0 (r.0) if successful and return -1 in
register 0 (r.0) if an error occurs.

See Also IRAPI Manual Pages: irParams(3IRAPI), IrPARAMETERS(4IRAPI),
irGlobalParam(3IRAPI)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 496

setparam

Name This script instruction sets a parameter associated with a script.

Synopsis include “tas_defs.h”
setparam (type.param, type.value)

Description The setparam instruction dynamically sets a parameter associated with a
script. Note that Register 0 (r.0) is set to a negative number if the instruction
fails.

The following are possible parameters that can be specified:

• SERVICE_TYPE — Change the service type for outbound PRI calls.
Valid service types are (Table 24 on page 496):

Table 24. Valid Service Types

Service Service Type

SDN (including GSDN) SVC_SDN

MEGACOM 800 SVC_MEGACOM800

MEGACOM SVC_MEGACOM

INWATS SVC_INWATS
1 of 2

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 497

Note: If you specify a service type that is not available, typically the tic
instruction returns the value ‘p’ in r.0. r.1 typically contains the
value CV_MIGGINGIE (96) or CV_SERVICENA (63) depending
on the switch software.

If the service you need to specify is not included in tas_defs.h, use the
following lines:

#define SPECIAL_SERVICE X /* service type you want to use */
setparam(SERVICE_TYPE, SPECIAL_SERVICE)

WATS maximal subscribed band SVC_WATS

ACCUNET switch digital SVC_ACCUNET

Nodal Long Distance Service SVC_NODAL_LDS

International 800 SVC_I800

ETN SVC_ETN

Private Line SVC_PRIVATE_LINE

DIAL IT NOVA, MULTIQUEST SVC_DIALITNOVA

Reserved (CNO) SVC_RESERVED_CNO

Table 24. Valid Service Types

Service Service Type

2 of 2

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 498

where X is a number between 0 and 31 that is to be placed in the Facility
Coding Value field of the Network-Specific Facilities information element
of the ISDN SETUP message.

• BEARER_CAP — Change the bearer capability for PRI calls. Valid
bearer capabilities are shown in Table 25 on page 498:

• RESOURCE_RETURNMODE — Change the return resource mode for
shared system resources (that is, VOICE, TTS, RECOG, etc.). By default
TMS waits up to 10 seconds if it cannot immediately get an SSP or SP
resource needed for a script. Valid values are:

~ IRD_BLOCKFOREVER (defined in irDefines.h) — Wait as long as
necessary for the resource to become available

~ IRD_IMMEDIATE (defined in irDefines.h) — Fail if the resource is not
immediately available

Table 25. Valid Bearer Capabilities

Bearer Bearer Capability

Speech BEAR_SPEECH

Unrestricted digital BEAR_DIGITAL

Restricted digital BEAR_RDIGITAL

Modem 3.1 KHz audio BEAR_MODEM

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 499

~ <N> where N is any positive integer — Wait for N hundredths of a
second for the resource to become available

Example The following example shows how to use the setparam instruction in an
application to specify Nodal Long Distance Service when placing an
outbound call.

#include “tas_defs.h” /* Contains SERVICE_TYPE macro definitions */

#define DIALED_NUMBER 0 /* Location of character string to be
dialed */

 /* Specify the speech file you wish to use */
 tfile(application)

Begin:
 /* Set service type for outgoing call to Nodal Long Distance */
 setparam(SERVICE_TYPE, SVC_NODAL_LDS)

 /* initialize character string to be dialed */
 strcpy(ch.DIALED_NUMBER, ”6145551212”)

 /* Originate call */
 tic (‘O’, ch.DIALED_NUMBER)

 ...

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 500

setstring

Name This script instruction sets string parameter associated with a script.

Synopsis #include “tas_defs.h”
setstring (type.src, ctype.dst)

Description The setstring instruction sets a string parameter associated with a script. For
example, setstring can be used to set the calling party number on outbound
calls by setting the OUTBOUND_ANI parameter. After setstring is invoked,
subsequent outbound calls use the ctype.dst argument as the outbound
calling party number.

Register 0 is set to -1 if the ctype.dst argument is too long or if the type.src
argument is invalid. Register 0 is set to -2 if the ctype.dst argument is not a
valid number.

Examples The following examples set the calling party number of an outbound call to
(614) 555-1212:

Example 1:

setstring (OUTBOUND_ANI,”6145551212”)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 501

Example 2:

load (int.STRINGTYPE OUTBOUND_ANI)
strcpy (ch.CPN ”6145551212”)
setstring (int.STRINGTYPE ch.CPN)

setttfl

Name This script instruction sets touch-tone flushing.

Synopsis setttfl (type.flg)

Description The setttfl instruction allows the script to change the way TSM handles the
touch-tone buffer. Normally, TSM gets rid of any touch tones it has received
for the script when the speech buffer is flushed and speech is played. The
setttfl instruction disables the TSM action of clearing the touch-tone buffer
whenever speech is played.

If the type.flg argument is 1, touch-tone flushing is turned on. If the setttfl
instruction is not used, the default condition is to set touch-tone flushing to
on.

If type.flg is 0, touch-tone flushing is turned off and playing speech does not
cause the touch-tone buffer to be cleared. If touch-tone flushing is turned off
and talkoff has been enabled on the channel (using the tflush instruction with
the must_hear_flag set to 0), an instruction that normally plays the queued

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 502

phrases now clears any phrases queued in the phrase buffer. This happens
because phrases that are in the buffer are assumed to be part of the prompt
that the talkoff touch tones affect. With talkoff enabled, phrases that are
already queued will not be heard. Instead, the script advances to the
appropriate point based on the touch-tone input received.

Example setttfl(0) — Turn off touch-tone flushing

setttfl(1) — Turn on touch-tone flushing (default)

See Also getdig
getinput
ttclear

sleep

Name This script instruction causes the script to sleep.

Synopsis sleep(type.src)

Description The sleep instruction makes the script do nothing for the number of seconds
specified by the argument. See the event instruction for TSM events that
may interrupt the sleep instruction before the specified time has passed.

The sleep instruction is a speech flushing instruction and causes any queued
speech to be played before the sleep is done

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 503

Example In the following example, the script dials out on a channel, then waits 5
seconds for completion of the dial before continuing.

..............
tic(’d’,int.PHONENBR)
sleep(5)
.........

See Also event
nap

sp_alloc

Name This script instruction explicitly allocates/deallocates speech recognition
resources.

Synopsis sp_alloc(type.onoff, type.resource[,type.mode])

Description Note: The instruction resource_alloc replaces sp_alloc . Continued
use of sp_alloc is discouraged.

The sp_alloc instruction is explicitly used to allocate and deallocate speech
recognition on the SSP circuit card.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 504

The sp_alloc instruction may be used by a script to allocate the speech
recognition resource on the SSP circuit card. Normally, this resource is
shared by all scripts running on the system, and allocation is done
automatically only when the script actually uses the resource. If the SSP
resource is not available when an instruction that requires it is executed, the
instruction fails. By using sp_alloc, the script may test for the availability of a
particular SSP resource. If the resource is available, it is allocated to the
script until the script terminates or until the script deallocates the SSP or SP
resource using sp_alloc.

sp_alloc may be used to allocate an SSP resource for a period longer than
the script is actually recognizing speech. Care should be taken to avoid
overloading the systems SSP facilities, since this can occur if many scripts
using sp_alloc are running simultaneously. Script register 0 (r.0) is set to the
following values to indicate the status of the sp_alloc execution:

The type.onoff argument is used to tell sp_alloc whether to allocate or
deallocate resources. Its two valid values are as follows:

0 Success

-1 Error (sp_alloc already on or off)

-2 System resources not available

1 Allocate the SSP resource

0 Deallocate the SSP resource

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 505

The type.resource argument is used to tell the sp_alloc which SSP resource
or combination of SSP resources to allocate or deallocate. Each SSP
resource has a unique value. The values for each resource and examples of
how resources can be added are listed below in the following tables (Table 26
on page 505, and Table on page 506):

If the type.onoff argument is 1, the optional type.mode argument may be
used with the following values:

• IRD_IMMEDIATE (default as defined in irDefines.h) — Allocate
resources immediately

• IRD_BLOCKFOREVER (defined in irDefines.h) — Wait until resource
becomes available before continuing

Table 26. Resource Values:

1 Voice coding or playing

2 PRI function

4 WholeWord Speech Recognition
(SR)

8 Call Classification

16 Text-to-Speech

64 Echo cancelling

256 FlexWord Speech Recognition (SR)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 506

• <n> — Wait <n> hundredths of a second for resource to become
available before continuing, where n is a positive integer

The values for the WholeWord recognition and FlexWord recognition
resources can be added together to allocate or deallocate more than one
SSP or SP resource by using one sp_alloc instruction. See Table 27 on
page 506 for examples.

See Also resource_alloc

sr_talkoff

Name This script instruction enables/disables speech recognition during prompt.

Synopsis sr_talkoff(flag)

Table 27. sp_alloc Examples

Action sp_alloc Script Instruction

Allocate WholeWord recognition resource for the script sp_alloc(1,4)

Deallocate FlexWord recognition resource for the script sp_alloc(0,256)

Allocate both WholeWord recognition and FlexWord
recognition resource for the script

sp_alloc(1,260)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 507

Description The sr_talkoff instruction is used to enable/disable speech recognition
during the prompt (barge-in). When speech recognition during prompt is
enabled using sr_talkoff(1), the getinput instruction starts playing any
phrases in its queue and simultaneously turns on the recognizer. When
speech recognition during prompt is disabled with sr_talkoff(0), getinput
plays any phrases in its queue, then turns on the recognizer. Caller speech or
touch-tone input interrupts any of the phrases that were started with the
getinput. If a tflush instruction is used to initiate phrases immediately before
the getinput, the recognize during prompt does not apply to those phrases
(because the recognizer is not on).

If recognition during prompt is enabled, the call can be received through a
network interface circuit card (E1/T1 or Tip/Ring) that is connected to the
TDM bus with the ‘‘tdm’’ option set. Enabling sr_talkoff requires that the
SSP circuit card play the prompts. The E1/T1 circuit cards are already set to

If . . . Then . . .

Speech recognition is enabled with
sr_talkoff(1),

getinput plays phrases and
simultaneously turns on the
recognizer.

Speech recognition is disabled with
sr_talkoff(0),

getinput plays phrases then turns on
the recognizer.

 tflush starts playing phrases before
getinput,

Recognize during prompt does not
apply. (Recognizer is not on.)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 508

‘‘tdm.’’ However, for Tip/Ring circuit cards set to ‘‘talk,’’ the system detects a
‘‘recognition during prompt’’ request in the script and automatically uses an
SSP circuit card to play the prompts. If a Tip/Ring circuit card has the ‘‘talk’’
option set and sr_talkoff is off, the system plays all prompts with the Tip/Ring
circuit card. If a Tip/Ring circuit card has the ‘‘tdm’’ option set or sr_talkoff is
on, the system plays all prompts with the SSP circuit card.

Because playing prompts uses resources on the SSP circuit card, application
designers who find that the SSP resources are strained may want to consider
configuring their Tip/Ring circuit cards with “talk” and designing the
application to use as few speech processor resources as possible.

Example In this example, speech recognition is enabled during the prompt.

 sr_talkoff(1)

strcmp

Name This script instruction compares two character strings.

Synopsis strcmp(ctype.src,ctype.src[,type.len])

Description The strcmp instruction compares two character strings and returns the result
of the comparison in register 0 (that is, r.0). The return value is interpreted as
follows:

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 509

If r.0 is:

The ctype.src argument can be either an address or a literal string. If the
optional type.len argument is used, the comparison is limited to the number of
characters specified by the argument.

Examples In the following example, strcmp compares the literal string XYZ?:136 to the
string in location char.20. If they are equal (exactly the same) the script
jumps to the label equal.

strcmp ("XYZ?:136",char.20)
jmp(r.0 ==0,equal)

In the following example, the string stored at location int.56 is compared to
the string located at char.80. If the first string is greater or equal to the
second (that is, would be listed after the string at char.80 in an alphabetical
listing or is exactly the same as char.80), the script jumps to the label “greg.”

strcmp(int.56,char.80)
jmp(r.0 >= 0,greg)

=0 The strings are equal

<0 The first string is lexicographically less than the second string

>0 The first string is lexicographically greater than the second string

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 510

strcpy

Name This script instruction copies the source string to the destination.

Synopsis strcpy(ctype.dst,ctype.src[,type.len])

Description The strcpy instruction copies a character string specified by the ctype.src
argument to the address specified by the ctype.dst argument. The ctype.dst
argument must be a string address. The ctype.src argument can be an
address or literal string.

If the optional type.len argument is used, the instruction will copy, at most, the
number of characters specified by that argument. The result may or may not
be null terminated, depending on whether a null terminated character was
copied before the type.len character limit was reached.

Examples In the first example, the literal string ABCDEFGHI is copied into char.10. In
the second example, the string stored in char.10 is copied to char.50.

strcpy(char.10,"ABCDEFGHI")
strcpy(char.50,char.10)

strlen

Name This script instruction computes the length of a string.

Synopsis strlen(ctype.src)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 511

Description The strlen instruction computes the length of the string specified by the
type.src argument. The type.src argument can be a literal string or the
location of a string. The length of the string (that is, number of characters in
the string) is returned in register 0 (r.0).

Examples In the following example, the length of the string is stored at location char.19.
If the length of the string is less than 10 characters, the script jumps to the
label Lab1.

strlen(char.19)
jmp(r.0 < 10,Lab1)

In the following example, the length of the literal string AB123,:=+ is
computed (9 in this case) and stored in register 0. Since r.0 contains 9, the
script will not jump to Lab2).

strlen("AB123,:=+")
jmp(r.0 !=9,Lab2)

subprog

Name This script instruction executes a TSM script or IRAPI application as a
subprogram, and then returns to the parent script with data.

Synopsis subprog(ctype.appname[, type.data, type.nbytes])

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 512

Description The subprog() instruction is similar to the exec instruction. It may be used to
run another TSM script or IRAPI application. When an application is run with
subprog(), however, the calling script (parent) is not replaced by the new
application. Instead it is run as a subprogram and returns to the point where
subprog() was called when the called application terminates. Data may also
be passed in both directions via subprog().

Note: Use of subprog() involves a UnixWare process level context
switch that may decrease system performance if used
excessively. Do not use subprog() if you can use a script
subroutine to do the same thing. See label() instruction.

TSM scripts that are run with subprog() have direct access to a parent
script’s data via the special "&ch.", "&int.", and "&short." data type specifiers.
When one of these data types is used, they must be followed by a TSM
register number containing an offset into the parent script’s data space which
references the desired data. The name of the parent script may be obtained
with the special "&script.0" argument. The value of this argument will be a
null string if there is no parent script.

Note: If the parent is an IRAPI application that calls a TSM script with
irSubProg, this method cannot be used to access data in that
application. Using the ’&’ data types will always access the
nearest ancestor TSM script (if any). For example, if TSM script A
subprog()s IRAPI application B, and B in turn irSubProg()s TSM
script application C, then A is the nearest ancestor TSM script to
C. In this case, when using the ’&’ argument data types, C will

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 513

access A’s data, not B’s. If there is no ancestor TSM script to
access, the instruction using these argument types will fail. It’s
best to check the "&script.0" value first to see if there is a parent
script to access and get its name. Note that a running script can
get its own name through the "script.0" argument.

The ctype.appname argument is the the name of the application to be
executed.

The optional type.data and type.nbytes arguments are used to pass a block
of data to the new application. The type.data argument specifies the location
of the data and type.nbytes specifies the size of the data in bytes. If
type.data is a register or immediate, type.nbytes is ignored and the size of an
integer (4 bytes) is assumed.

The data passed to the new application via the type.data argument is
available to a TSM script via the special X.0 argument, just as if the exec
instruction were used to pass the data. IRAPI applications have access to
this data through the IRP_EXEC_BUF parameter. If the called application
modifies X.0 (or IRP_EXEC_BUF), that modification will be accessible by the
calling application when subprog() returns.

All TSM register values are also passed to the new application. Script
applications access these values in their own registers (r.REGNUM argument
type). IRAPI applications may access these values through the IRP_
REGISTER parameter.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 514

Note: The subprogram stack is limited by the UnixWare system tunable
parameter NCONTEXTSTACK, which is set to three by default.
This limits the use of subprog() to three levels per application
unless you tune NCONTEXTSTSACK to a higher value (limit of
10) by using the UnixWare idtune command. See the UnixWare
books details.

Return Values subprog() returns values in both register 0 (r.0) and register 1 (r.1). r.0 is 0 if
subprog() was successful. It contains a negative value to indicate failure. If
successful, subprog() also returns in r.1 whatever value was passed to the
quit() instruction by a called TSM script application, or whatever value was
passed to irReturn by a called IRAPI application.

Examples The following example executes an application called "APPL", passing it 100
bytes of data and checking return values:

subprog("APPL", ch.DATA, 100)
jmp(r.0 < 0, L_Failure)
quit(r.1)/* quit with return value from APPL */ L_Failure:
talk("failed to execute application")
quit(-1)

See Also exec(),
execu()
label()
quit()

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 515

IRAPI Manual Pages: irSubProg(3IRAPI), irReturn(3IRAPI),
IrPARAMETERS(4IRAPI)

talk

Name This script instruction speaks one or more phrases.

Synopsis talk("phrase_name"[,"phrase_name"]...)

talk(type.src)

Description The first format for the talk instruction uses one or more arguments, each
being a phrase in double quotes. Each phrase must match a phrase listed in
the application_name file specified by the tfile instruction. It must also match
according to the rules explained in Chapter 3, TAS Script Instructions. The
second format uses the assigned phrase number which appears in the
application-name.pl file or listfile.

Note: Do not use character data types for arguments in either format.

When talk (as well as tchars and tnum) instructions are executed, the
system queues phrases in a buffer, but the phrases are not immediately
played. Phrases are played under either one of the following two conditions:

1 The script executes a speech-flushing instruction

2 The script executes a say instruction (Text-to-Speech)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 516

Example In the following example, the GREET subroutine is called on to say two
introductory phrases from the talkfile specified in the tfile instruction. It then
calls on a subroutine to speak the final phrase, “thank you.”

MAIN:
 tfile("/speech/talk/application_name.pl")
 GREET()

 BYE()

GREET:
 talk("hello," "please enter your id")
 indirect_talk("thank you.")
............
 rts()
indirect_talk:
 talk(r.3)
 rts()

See Also tchars
tnum

talkresume

Name This script instruction starts playing queued phrases at a specified point.

Synopsis talkresume(type.offset)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 517

Description The talkresume instruction plays whatever phrases remain from the last
tflush instruction starting at the point they were interrupted (that is, by talk
off) plus the given offset in seconds. If the offset is a positive number, speech
is played from a point after the interruption. If the offset is a negative number,
speech is played from a point before the interruption. If the offset is 0, play
starts at the point where the interruption occurred. If VROP has played all of
the phrases, only a negative offset has any effect.

The talkresume instruction stores a return value in register 0. If the value is
negative, an error has occurred. If the value is 0, play completed
successfully. If the value is +1, the “play complete” was caused by talkoff. If
the value is +2, there was no speech left to play (that is, talkresume was
given with a non-negative offset when VROP had already played all the
speech).

For talkresume to work properly, the speech it affects must have been
played originally with the tflush instruction with the optional remember_flag
argument set to 1. This tells VROP to “remember” the speech that tflush tells
it to play and to keep track of where that speech is interrupted. Subsequent
calls to talkresume then have the desired effect on this speech. VROP
remembers the speech it was playing until it receives another set of phrases
to play by subsequent script instructions. Only one set of phrases can be
remembered per channel at a time.

Example In the following example, the script is instructed to skip ahead four seconds,
then resume talking.

talkresume(4)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 518

tchars

Name This script instruction speaks phrases from a variable name.

Synopsis tchars(ctype.src[,’inflection’])

Description The tchars instruction puts the null terminated string of alphanumeric
characters that are identified by the first argument into a queue for speaking.
The second argument, when specified, controls the speech inflection. The
three inflection parameters are r (rising), f (falling), and t (total). Total
produces both a rising inflection on the first phrase and a falling inflection on
the last phrase if there is more than one; it produces a falling inflection if there
is only one phrase. It is important to note that “r”, “f”, and “t” work only if those
types of phrases are in the talkfile.

The tchars instruction speaks one character at a time, unlike the tnum
instruction, which speaks the digits as one number. For example, the tchars
instruction would speak the number 61 as “six-one” while the tnum
instruction would speak “sixty-one.” Also, tchars speaks the string “61A” as
“six-one-A.”

Example In the following example, the script asks the caller to enter his/her ID number.
The script waits for three touch tones, which it stores in ch.ID. The script then
repeats what the caller entered, reading the value in ch.ID.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 519

talk("Please enter your ID number")
getinput(ch.ID,3)
talk("Your ID number is")
tchars(ch.ID)
tflush()

See Also talk
tflush
tnum

tfile

Name This script instruction identifies a talkfile.

Synopsis tfile(“ application_name.pl”[,” talkfile 2”...])

Description The tfile instruction indicates the speech database to use for the script. The
first listfile name, called application_name.pl (see Chapter 2, Application
Structure), is the name of the primary listfile. Its talkfile number is used for
the initial setalk and is used for tnum, tchar, and talk instructions if the tfile
portion of the phrase ID is 0.

Each phrase in the talkfile is identified by a unique number and string in the
listfile. Because the TAS uses this information, the tfile instruction must be
specified in the script before the first voice output instruction.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 520

Phrases in the primary listfile are not bound to the talkfile when the script is
compiled. They are played from the talkfile currently in effect when the talk
instruction is executed. However, any additional listfiles given in the tfile
instruction have the talkfile and phrase number bound when the script is
compiled. Phrases selected from these listfiles are not affected by changes
in the talkfile that occur during script execution.

Example In the following example, the tfile instruction specifies the file of application
phrases that are accessed by the voice output instructions, where the applN
identifier in the file name representing the application-name.

MAIN:
 tfile("/speech/talk/STOCKS.pl")
 GREET()
..........
 BYE()

See Also setalk
talk
tchars
tnum

tflush

Name This script instruction outputs the speech buffer unconditionally.

Synopsis tflush([must_hear_flag][,wait_indicator][,remember_flag])

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 521

Description Phrases specified by a script to be spoken with the talk, tchars, or tnum
instruction are queued (that is, not spoken) pending the encounter of a tflush
instruction or a data gathering instruction.

The accepted values for the arguments are:

The must_hear_flag option, when set to a non-zero value, disables talkoff so
that any speech activity (voice play or voice coding) on the current channel
will not be stopped by touch tones. When using this option with speech
play-related instructions (talk, tnum, or tchars), tflush(1) should follow those
instructions. When using this option with voice coding (vc), tflush(1) should
precede the vc instruction. The talkoff is enabled automatically by the next
wait-causing instruction in the script.

must_hear_flag 0 Touch tones entered during play or voice coding cause
play or voice coding to stop (default)

1 Touch tones entered during play or voice coding do not
cause play or voice coding to stop

wait_indicator 0 Wait for the play to complete before continuing script
execution (default)

1 Do not wait for the play to complete. Continue script
execution.

remember_flag 1 Remember phrases played by this instruction so they
may be played again with the talkresume instruction.

0 Do not remember the speech

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 522

The tflush instruction returns a value in register 0. If that value is negative, an
error occurred. If that value is +1, ‘play complete” occurred because of
talkoff. If the value is 0, play has completed successfully.

Examples In the following example, the script wants the caller to hear music while it
processes the transaction with the host computer. After this processing
completes, the music is stopped, and the caller is informed of the results and
asked to continue entering commands. The tflush instruction does not
remember the phrases played by the instruction.

............ ...

talk(int.MUSIC) /* Play music to the caller */
tflush(1,1,0) /* Do not let touch tones turn off music and don’t wait*/
dbase(0,FUDB,ch.ACCOUNT_ID,8,int.SELL_PRICE, 4) /* Get info from
host */

tstop(1)
talk("Your account has now been credited with Lucent Technologies
stock for the price of")
tnum(int.SELL_PRICE)
talk("Enter your next instruction")
getinput(ch.DIG,2)

............. ...

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 523

In the following example, any touch tones entered are encoded along with the
speech.

.......... ..
tflush(1) /*do not end coding if user enters touch tones*/
vc(’b’,10,ADPCM32)

See Also talk
tstop

tic

Name This script instruction controls a telephone interface line (channel).

Synopsis tic(’C’, ctype.dialstr, type.rings)

tic(’D’, ctype.dialstr)

tic(’F’)

tic(’O’, ctype.dialstr)

tic(’W’, type.rings)

tic(’a’)

tic(’d’, ctype.dialstr)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 524

tic(’f’)

tic(’h’)

tic(’o’, ctype.dialstr)

tic(’w’, type.rings)

Description The tic instruction provides the script with control functions for the telephone
interface line (channel) that the script is currently using. The function that the
tic instruction performs depends on the value of its first argument. These
argument values and their corresponding functions are listed below.

Note: This instruction handles differences between telephony types
better than tic(‘O’) , or the combination of tic(‘o’) and tic(‘W’) .

The tic instruction uses script registers 0 (r.0) and 1 (r.1) to return a result.
This result may differ according to whether the script is using a Tip/Ring
(T/R), T1 (E&M), E1 (CAS), PRI, or LSE1/LST1 channel. Where such
variations exist, they are noted below.

• C — Call a number and wait for the disposition. Dial ctype.dialstr; turn on
speech energy detection and wait for number of rings given in type.rings
for “answer” (speech energy or ringing stopped), or call progress tone
other than ringing, or “no answer.”

• D — Dial ctype.dialstr; wait for any call progress tone, then resume the
script.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 525

• F — Flash; wait for any call progress tone, then resume the script.

• O — Originate (go off-hook and dial ctype.dialstr); wait for the first call
progress tone (CPT), then resume the script. Note that without Full CCA,
the first CPT could be a Ringback, with no indication of Answer or No
answer disposition.

• W — Turn on speech energy detection and wait for number of rings given
in type.rings for “answer” (speech energy or ringing stopped) or “no
answer.”

• a — Answer the line (go off-hook).

• d — Dial ctype.dialstr, then resume the script.

• f — Flash the hook (transfer to another line), then resume the script.

• h — Hang up the line (go on-hook).

• o — Originate (go off-hook and dial ctype.dialstr), then resume the script.

• w — Wait for the number of rings given in type.rings for “answer” (ringing
stopped) or “no answer”

Table 28 on page 526 lists the possible return values for the different forms of
the tic instruction. Note that the set of possible return values depends on the
type of channel: Tip/Ring, T1 (E&M), E1 (CAS), PRI, or LSE1/LST1.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 526

Table 28. Return Code Results for the tic Instruction

Meaning Return
Values

For tic Available On

r.0 r.1 T/R T1 (E&M) or
E1 (CAS)

PRI LSE1
LST1

Instruction successfully
completed

0 • ’a’,’d’,’f’1,’h’,’o’ • • • •

Answer detected (e.g.,
voice energy detected
or ringing stopped)

’A’ • ’W’,’w’2,’C’ • •3

Answer supervision
from switch (or DTMF
connection tone
detected from
DEFINITY ECS)

’P’ • ’D’,’O’,’W’,’w’,’
C’

4 • • 4

Busy5 ’B’ • ’F’1,’D’,’O’,’W’
,’w’,
’C’

• • •3

1 of 4

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 527

Fast busy5 (reorder
tone)

’F’ • ’F’1,’D’,’O’,’W’
,’w’,
’C’

• • •3

Ring no answer ’N’ • ’W’,’w’ • •3

Audible ringing ’R’ • ’F’,’D’,’O’ • •3

Dialtone detected5 ’D’ 6 ’F’,’D’,’O’,’W’,’
w’,’C’

• •6 •3

Stutter dialtone
detected

’S’ • ’F’1,’D’,’O’,’W’
,’w’,
’C’

• •3

ISDN vacant code6 ’v’ (any) •6

Provisioning or protocol
error

’p’ 6 (any) •6

Table 28. Return Code Results for the tic Instruction

Meaning Return
Values

For tic Available On

r.0 r.1 T/R T1 (E&M) or
E1 (CAS)

PRI LSE1
LST1

2 of 4

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 528

Internal hardware or
software error or
dialing error

-1 • (all) • • • •

Timeout (no call
progress tones
detected within the
timeout period)

-2 • (all except ’h’) • • • •

Illegal dial string
passed7

-3 6 ’D’,’O’,’d’,’o’,’
C’

• • •6 •

Table 28. Return Code Results for the tic Instruction

Meaning Return
Values

For tic Available On

r.0 r.1 T/R T1 (E&M) or
E1 (CAS)

PRI LSE1
LST1

3 of 4

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 529

Touch tone entry
detected

‘t’ • ‘O’, ‘C’ • • • •

Intercept tone heard
representing an invalid
extension (on
DEFINITY ECS or
other Lucent
Technologies PBX)

‘s’ ‘I’ ‘O’, ‘D’, ‘C’,
‘W’, ‘w’

• •3

Caller disconnected
during transfer

‘h’ • ’D’,’W’,’w’ •8 •8

1.A tic(‘F’) or tic(’f’) instruction on a PRI channel will always fail (r.0 = -1).
2.A return value of ‘A’ in response to a tic(‘w’) means only that ringing has stopped before the given

number of rings. The speech energy detector is turned on only when a tic(‘W’) or tic(‘C’) is done.
3.Speech energy detection and Call Progress Tone detection are not available for LST1 on an AYC11

or AYC3B, and timeout (-2) is the most likely value for r.0. However, these features are available
for LSE1 and LST1 on the AYC21.

Table 28. Return Code Results for the tic Instruction

Meaning Return
Values

For tic Available On

r.0 r.1 T/R T1 (E&M) or
E1 (CAS)

PRI LSE1
LST1

4 of 4

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 530

If your script encounters a secondary dial tone, you can use a sequence of
two tic instructions, the first dialing the access number and waiting for
secondary dial tone, and the second dialing the remainder of the telephone
number.

4.When connected to a Lucent Technologies DEFINITY ECS or compatible switch that is properly ad-
ministered for the optional feature Sending DTMF Feedback Tones to the VRU, the application
will get an r.0 value of ‘p’ for Tip/Ring, LSE1, or LST1 when the connection tone is received. Oth-
erwise, the ‘p’ is not expected for these types of channels.

5.For PRI channels, the voice system converts information provided by the switch into busy, fast
busy, or dialtone call dispositions. An audible tone may not be present.

6.This disposition is not always provided by the switch, the only source of PRI information (without
Full CCA). However, when it is provided, more specific info (the ISDN cause value) is available in
register 1 (r.1). See Table 31 on page 535 for the list of ISDN Cause Values. The tic instruction
also will return a value in r.1 when the Full CCA feature is used. See Table 32 on page 541 for a
list of r.1 return values.

7.On an E1 or T1 channel, any dial string with a character other than 1,2,3,4,5,6,7,8,9,0,#,*,A,B,C,
D,a,b,c, or d is illegal. PRI channels allow all of the above characters except * and #. On Tip/Ring
channels, any string with a character other than 1,2,3,4,5,6,7,8,9,0,#,*,A,B,C,D, a,b,c,d,(,), or – is
illegal for touch-tone dialing. For dial pulse dialing on a Tip/Ring channel, any string with a char-
acter other than 1,2,3,4,5,6,7,8,9,0,(,), or – is illegal. For E1, T1, and PRI, the maximum dial string
is 15 digits. For Tip/Ring channels, the maximum dial string is 30 digits. If more digits need to be
dialed than are allowed, multiple tic(‘o’) , tic(‘O’) , tic(‘d’) , and/or tic(’D’) instructions may be re-
quired.

8.To get the caller disconnected value (‘h’ for r.0), the Tip/Ring, LSE1, or LST1 channel must be con-
nected to a Lucent Technologies DEFINITY ECS or compatible switch with the optional feature
Sending DTMF Feedback Tones to the VRU properly administered on the switch and on the VRU.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 531

Due to the characteristics of most switches, you should not require the
system to send a flash immediately after answer. The switch may not be
prepared to recognize the flash so soon after it detects answer. If your
application requires a flash (transfer) after answer, a delay of 1–2 seconds
after answer is recommended before sending the flash signal. A short
message can be played in this interval to make the delay less noticeable to
callers.

Using a sleep or nap instruction after tic(’f’) or tic(’F’) causes the system to
disconnect because it detects dial tone and assumes the caller has hung up.
The event instruction may be used by a script with the EHANGUP event type
to catch this event and prevent disconnect.

If you use the tic(’d’) instruction to send touch tones between two scripts, the
tones may be lost if one script sends tones before the other script turns on its
DTMF receiver. To avoid this problem, insert a delay of more than 70
milliseconds (for example, use ’nap(10)’ to cause the script to sleep for 100
milliseconds) before the tic(’d’) instruction.

If the system encounters a glare condition (that is, an incoming call is
detected at almost the same moment the system is dialing out), the system
drops the outgoing call and answers the incoming call. The termination of the
script dialing out is treated as a hangup, meaning that if there is an
EHANGUP event subroutine defined by the script (see the event instruction),
it is executed before the script ends. This may mean that more than the
usual number of rings are heard by the caller before the incoming call is
answered.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 532

For the tic(’W’) and tic(’w’) instructions, the type.rings argument specifies
the timeout setting for the instruction, that is, how many rings the system
should wait before determining that the call is not answered. TSM sets the
timeout value based on the number of rings specified in this field. If the
number of rings is greater than 6 and the script does not explicitly set the
timeout value (see the nwitime instruction), the timeout value is set in the
following manner:

timeoutValue (in seconds) = ((nRingsToWait+1)*6) + 5

For example, if you set type.rings to 10, TSM waits until after 10 rings have
passed before timing out on the tic instruction. If the number of rings is less
than 6, the default of 45 seconds is used as the timeout value.

Example The following example is a portion of a script that uses the tic instruction. In
this example, the script copies “9999” into NUMBER, then originates a call to
that number. Depending on what is returned, the script either jumps to the
end or ok label.

#define NUMBER 5

strcpy(ch.NUMBER, "9999")
tic(’O’, ch.NUMBER)
jmp(r.0 == -1, end)/* hardware failure */
jmp(r.0 == -2, end)/* timeout, no response */
jmp(r.0 == ’B’, end) /* busy */
jmp(r.0 == ’R’, ok)/* ring */

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 533

end:
quit()

ok:
tic(’h’)
rts()

Feature Related
Changes (PRI
and/or Full CCA)

The following information applies to the tic instruction when using it with PRI
and/or Full CCA in an application.

Using tic with PRI

The supported tic instruction options for PRI are listed in Table 29 on page
533. These options are used in the same manner for PRI as for T1 (E&M).

Table 29. tic Options Supported for the PRI

Option Function

a Answer an incoming call

h Disconnect (hangup) a call

o Originate a call

C, O Originate a call & wait for Answer Supervision

d Dial touch-tone digits

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 534

Some options to the tic instruction are not applicable to the PRI. These
options are listed in Table 30 on page 534.

The tic(‘C’) and tic(‘O’) Return Values and ISDN Cause Values

The PRI implementation of the tic(‘C’) (Call) and tic(‘O’) (Originate)
instructions provide additional return code information for disconnected calls,
over the T1 (E&M) and Analog interface implementations. Register r.1
returns the ISDN cause value (if available) for an incomplete call. These
cause values are returned by the network and are passed to the script. The
cause value is also passed in register r.1 for a disconnect event. Table 31 on
page 535 contains a list of ISDN cause values returned in register r.1. These
are arranged in groups according to the more general call disposition value
returned in register r.0.

Table 30. tic Options Not Applicable to the PRI

Option Function

f or F Switch Hook Flash

w or W Wait for Speech Detection

D Dial digits and wait for tones

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 535

Note: If the called party is not an ISDN subscriber, there is no ISDN
cause value and -2 is returned to the script. Until ISDN is more
widely used, -2 will be a common return. The include (header) file
(/att/include/tas_defs.h) provides macro definitions of these
values. This file can be used by your application by including the
following line in your script source file:

#include “tas_defs.h”

Table 31. tic (‘C’) and tic (‘O’) Return Values and ISDN Cause Values for PRI

Call Disposition
 Value (r.0)

Return Value (r.1) Meaning

Vacant Code (‘v’) CV_UNASSNUM (1) CV_
NUMCHANGE (22)

Unassigned number
Number changed

1 of 3

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 536

Provisioning or
Protocol Error (‘p’)

CV_UNACCEPTCHAN (6) CV_
NOUSER (18)
CV_FACREJECT (29)
CV_STATRESP (30)
CV_NORMALUNSP (31)
CV_TEMPFAIL (41)
CV_FACNOTSUB (50)
CV_OUTBARRED (52)
CV_INBARRED (54)
CV_BEARERNA (58)
CV_SERVICENA (63)
CV_BEARERNI (65)
CV_CHANNELNI (66)
CV_FACILITYNI (69)
CV_INVALIDCALL (81)
CV_NOCHANNEL (82)
CV_BADDEST (88)
CV_MISSINGIE (96)
CV_BADMESS (97)
CV_BADSTATE (98)
CV_INVALIDIE (100)
CV_TIMEOUTREC (102)
CV_INTERWORKING (127)

Channel unacceptable
No user response
Facility rejected
Status enquiry
Normal, unspecified
Temporary resource failure
Facility not subscribed
Outgoing calls barred
Incoming calls barred
Bearer not available
Service not available
Bearer not implemented
Channel not implemented
Facility not implemented
Invalid call reference
Nonexistent channel
Incompatible destination
Info element missing
Nonexistent message type
Incompatible message
Invalid info element
Recovery on timer
Interworking, unspecified

Table 31. tic (‘C’) and tic (‘O’) Return Values and ISDN Cause Values for PRI

Call Disposition
 Value (r.0)

Return Value (r.1) Meaning

2 of 3

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 537

Dialtone Detected (“D’) CV_NORMALCLR (16) Normal clearing

Busy (“B’) CV_USERBUSY (17) User busy

Fast Busy (‘F’) CV_NOROUTE (2)
CV_CALLREJECT (21)
CV_NOCIRCUIT (34)
CV_NETWORKDOWN (38)
CV_SWITCHBUSY (42)
CV_USERIETOSS (43)
CV_CIRCUITNA (44)
CV_CALLPREEMPTED (45)

No route
Call rejected
No circuit
Network out of order
Switching congestion
Access info discarded
Circuit not available
Pre-empted

Answer Supervision
(‘P’)

Hardware Failure,
Undetermined Reason
(-1)

Timeout - No Answer,
Reason Not Provided
(-2)

Illegal Dial String (-3) CV_INVALIDNUM (28) Invalid Number

Table 31. tic (‘C’) and tic (‘O’) Return Values and ISDN Cause Values for PRI

Call Disposition
 Value (r.0)

Return Value (r.1) Meaning

3 of 3

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 538

You should be aware of the following issues when using these ISDN values:

• Disconnection detected (‘D’) indicates disconnection. It is comparable to
dial tone detection on analog lines.

• Busy (‘B’) is comparable to busy, although there may be no audible busy
tone.

• Fast busy (‘F’) is comparable to fast busy, although there may be no
audible fast busy tone.

Example of PRI Heading

Figure 31 provides an example of how to use this feature in an outbound call
script. This script outdials customer numbers retrieved from an account
database. If the number dialed was unassigned, invalid, or incomplete, the
script sends a message back to the database indicating this. The customer
record can then be checked.

Figure 31.PRI Application Using the tic Instruction

#include “tas_defs.h” /* VIS provide header file */
#include “dip_defs.h” /* Application dip header file */
#define DIALED_NUMBER 0 /* location of dialed number string */

 /* Specify the speech file you wish to use */
 tfile(application)

Begin:
 /* Get the number to be dialed from a database */
 dbase (DIP14, RETRIEVE_NUMBER, ch.DIALED_NUMBER, ...)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 539

 /* Telephone number to be dialed is now in ch.DIAL_NUMBER */
 tic(‘O’, ch.DIALED_NUMBER)
 /* Check to see if the call was answered */
 jmp (r.0 == ’P’, Continue)/* Call answered, speak */
 /* Call was not answered */
 /* Did PRI indicate that the number does not exist? */
 jmp (r.1 == CV_UNASSNUM, NumberUnassigned)
 /* Did PRI indicate that the number was incomplete? */
 jmp (r.1 == CV_INVALIDNUM, NumberIncomplete)
 /* Did PRI indicate that the number has been changed? */
 jmp (r.1 == CV_NUMCHANGE, NumberChanged)
 /* Otherwise hangup */
 tic(‘h’)
 quit()
NumberChanged:
 /*Send request to database to mark this telephone number as */
 /* changed. (Client’s number can be updated later) */
 dbase (DIP14, CHANGED_NUMBER, ch.RESULT, ch.DIALED_NUMBER, ...)
 quit()
NumberUnassigned:
 /* Send request to database to mark this telephone number
 /* as unassigned. (Check Client’s number for accuracy) */
 dbase (DIP1, UNASSIGNED_NUMBER, ch.RESULT, ch.DIALED_NUMBER, ...)
 quit()
NumberIncomplete:
 /* Send request to database to mark this phone number as */
 /* bad. (Client’s number can be check for completeness) */
 dbase (DIP1, INCOMPLETE_NUMBER, ch.RESULT, ch.DIALED_NUMBER, ...)
 quit()
Continue:

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 540

 /* continue with normal call processing */
 talk (“Hello”)
 ...
 quit()

Using tic with Full CCA

Be aware that if Full CCA (available only for US and Canada) determines
that an outbound call cannot be completed because of a ring-no answer, the
transaction should hang up the call using a tic(’h’) as soon as possible. If
the call is not hung up immediately, the called party could answer (their
phone still is ringing). The application will be unaware of this and will hang up
on the called party as soon as the application completes. This not only
annoys the called party but also could result in the calling party being billed
for a failed call.

Do not use the tic(‘W’) or tic(‘w’) instruction with Full CCA.

For accurate transfer results, assign Full CCA only to an SP circuit card.

Full CCA Call Dispositions

Table 32 on page 541 lists the possible return values for the tic(‘C’) , tic(‘D’) ,
and tic(‘O’) instructions when Full_CCA is turned on via the setcca
instruction. Note that the set of possible return values depends on the type of
channel: Tip/Ring, T1, PRI, or LST1.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 541

Special Information Tones

The special information tones (SITs) shown in Table 32 on page 541 are
returned to the script in register r.1 when register r.0 is set to ‘s’. SITs are
available only when Full CCA is used.

Table 32. Call Dispositions for tic (‘C’), tic (‘D’), and tic (‘O’) with Full CCA

Meaning TSM Level Available On:

r.0 r.1 T/R T1 (E&M) PRI LST1

Answer detected (for example, voice
energy detected)

‘A’ 0 • 1 1 •

Answer supervision from switch(or
DTMF connection tone detected from
Lucent Technologies DEFINITY ECS
or compatible switch)

‘P’ 0 2 • • 2

Busy ‘B’ 0 • • • •

Fast busy ‘F’ 0 • • • •

Ring no answer ‘N’ 0 • • • •

High and dry ‘H’ 0 • • • •

Modem tone on Analog ‘T’ 0 • •
1 of 3

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 542

Modem tone on Digital trunks ‘P’ 0 • •

Dialtone detected3 ‘D’ 03 • • 4

Stutter dialtone detected ‘S’ 0 • 4

ISDN vacant code ‘v’ 3 •

Provisioning or protocol error ‘p’ 3 •

Internal hardware or software error or
dialing error

-1 0 • • • •

Timeout (no call progress tones
detected within the timeout period)

-2 0 • • • •

Illegal dial string passed5 -3 0 • • • •

CCA resource used up -4 0 • • • •

Reorder, intraLATA SIT ‘s’ ‘R’ • • • •

Reorder, interLATA SIT ‘s’ ‘r’ • • • •

No circuit, intraLATA SIT ‘s’ ‘K’ • • • •

Table 32. Call Dispositions for tic (‘C’), tic (‘D’), and tic (‘O’) with Full CCA

Meaning TSM Level Available On:

r.0 r.1 T/R T1 (E&M) PRI LST1

2 of 3

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 543

No circuit, interLATA SIT ‘s’ ‘k’ • • • •

Vacant code SIT ‘s’ ‘V’ • • • •

Intercept SIT ‘s’ ‘I’ • • • •

Ineffective other SIT ‘s’ ‘O’ • • • •

Domestic other SIT ‘s’ ‘d’ • • • •

International other SIT ‘s’ ‘o’ • • • •

International no circuit SIT ‘s’ ‘c’ • • • •

Internatinal foreign fail SIT ‘s’ ‘f’ • • • •

Unknown SIT ‘s’ ‘U’ • • • •

Toucn tone entry detected ‘t’ 0 • • • •

Caller disconnected during transfer ‘h’ 0 •6 • • •6

1.By default, speech energy detection is disabled for T1 and PRI channels. However, it can be enabled
using the setcca script instruction.

Table 32. Call Dispositions for tic (‘C’), tic (‘D’), and tic (‘O’) with Full CCA

Meaning TSM Level Available On:

r.0 r.1 T/R T1 (E&M) PRI LST1

3 of 3

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 544

2.When connected to a Lucent Technologies DEFINITY ECS or compatible switch that is properly ad-
ministered for the optional feature Sending DTMF Feedback Tones to the VRU, the application will
get an r.0 value of ‘p’ for Tip/Ring, LSE1, or LST1 when the connection tone is received. Otherwise,
the ‘p’ is not expected for these types of channels.

3.The disposition of calls on PRI channels is based not only on Full CCA but also on information provided
by the switch (the system will respond to the first disposition returned from either source). When this
disposition is provided by the switch, more specific information (the ISDN cause value) is available
in register 1 (r.1). See Table on page 535 for the list of ISDN Cause Values. If this disposition is pro-
vided by Full CCA, register 1 always contains zero, unless r.0 is ‘s.’

4.Dialtone and stutter dialtone will not be reported for LSE1 or LST1 when Full CCA is used. Scripts must
use Intelligent CCA rather than Full CCA for the first half of a call where a secondary dialtone is re-
quired before dialing the second half of the call. Note that the secondary dialtone can only be reported
when using the AYC21 circuit card (E1/T1).

5.On a E1 or T1 channel, any dial string with a character other than 1,2,3,4,5,6,7,8,9,0,#,*,A,B,C, D,a,b,c,
or d is illegal. PRI channels allow all of the above characters except * and #. On Tip/Ring channels,
any string with a character other than 1,2,3,4,5,6,7,8,9,0,#,*,A,B,C,D, a,b,c,d,(,), or – is illegal for
touch-tone dialing. For dial pulse dialing on a Tip/Ring channel, any string with a character other than
1,2,3,4,5,6,7,8,9,0,(,), or – is illegal. For E1, T1, and PRI, the maximum dial string is 15 digits. For
Tip/Ring channels, the maximum dial string is 30 digits. If more digits need to be dialed than are al-
lowed, multiple tic(‘o’) , tic(‘O’) , tic(‘d’) , and/or tic(’D’) instructions may be required.

6.To get the caller disconnected value (‘h’ for r.0), the Tip/Ring, LSE1, or LST1 channel must be connect-
ed to a Lucent Technologies DEFINITY ECS or compatible switch with the optional feature Sending
DTMF Feedback Tones to the VRU properly administered on the swittch and on the VRU.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 545

You should be aware of the following issues when using these dispositions:

• Fast busy (‘F’) represents any temporary error condition not explicitly
listed; for example, congestion or circuit busy, as well as fast busy. A blind
success (0) means that the call was dialed successfully but that the
system does not know if the call was answered.

• Stutter dialtone (‘S’) is generated by some switches in response to a
flash. When this disposition is returned to the script, it means that dialing
can proceed. For these switches, any other call disposition when the
switch is flashing indicates an error.

• A timeout (-2) means any type of timeout including a timeout on a tic
instruction or on the classifier (the SSP or SP).

• When v, p, D, or F is returned for outdials on PRI channels, more
information (the ISDN cause values) on the call dispositions for PRI
channels is available in register 1 (r.1). Table on page 535 lists the ISDN
cause values.

• When Register r.0 is set to ‘s’, the Special Information Tone (SIT) is in r.1.

Example

The following example (Figure 32) is an excerpt from a script showing how a
developer might use the setcca and tic instructions in a Full CCA application.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 546

Figure 32.PRI Application Using the tic Instruction

setcca(1,10,-1)
nextcall:
dbase(....) /* get number to dial from DIP */

tic(‘O’, r.3) /* call number in register 3 */

jmp(r.0 == ’N’, noAns) /* no answer after 10 rings */
jmp(r.0 == ’B’, busy)
jmp(r.0 == ’F’, retry)
jmp(r.0 == ’A’, answer)
jmp(r.0 == ’s’, SIT)
jmp(r.0 == -4, noResource)

noAns:
tic(‘h’) /* put line on-hook to stop ringing */

busy:
dbase (....) /* report result to controlling DIP */
goto (nextcall)

SIT:
jmp(r.1 == ’R’, retry)
jmp(r.1 == ’r’, retry)
jmp(r.1 == ’K’, retry)
jmp(r.1 == ’k’, retry)
dbase (....) /* report result to controlling DIP */

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 547

answer:
talk(“Hello, you may be the winner of a free trip to Hawaii”)
dbase (....) /* report result to controlling DIP */
goto (nextcall)

tnum

Name This script instruction speaks a number with natural speech.

Synopsis tnum (type.src[,’inflection’])

Description The tnum instruction accepts the numeric value specified by the first
argument, translates it into a string of phrases, and puts it in a queue for
speaking. The second argument, when specified, controls the speech
inflection.

The tnum instruction does not support speaking numbers in the billions and
trillions because most of these numbers are too big to fit into an integer
variable. However, the phrases “billion” and “trillion” are included in the
Enhanced Basic Speech package. If your script requires such large
numbers, we suggest that you start with an ASCII string, parse the string
(getting the amounts of billions and trillions as substrings), then convert the
three resulting substrings to integer values and speak them with the tnum
instruction. Insert a talk instruction with the phrase for “trillion” or “billion,”
where appropriate.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 548

Example In the following example, the program says it could not understand the caller.
Then the system pauses for 500 milliseconds of silence, and asks if the
number is the n-digit number that is stored in r.1 or the number
“six-hundred-fourteen.” The tnum instruction says the number to the caller
in natural-sounding speech.

The atoi conversion instruction is needed since the getinput instruction
returns information as a null terminated character string, but the tnum
instruction uses integers.

The tnum instruction is used when it is desired to hear the words hundred,
thousand, thirty, etc. in the response. The tchars instruction differs from
tnum by only speaking the numbers individually.

GET_ID:
 getinput(ch.DG,9)
 atoi(r.1,ch.DG)

...................... ..
 talk("i could not understand you","sil.500","did you say")
 tnum(r.1)
 talk("or")
 tnum(614)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 549

trace

Name This script instruction works with the trace line instruction to monitor scripts.

Synopsis trace(type.src[,type.src])

Description The trace script instruction works with the trace line command to display a
message from the script if the trace command is run on the channel on which
the script is running. These trace messages allow application developers to
monitor the progress of a script. This capability is useful in debugging and
troubleshooting scripts, either during the initial application development or if
problems rise while the application is running. The trace instruction allows
TSM to print messages to the shared memory area for trace messages.
These messages can include the default trace messages for TSM or for a
specific channel. The trace command is discussed in Intuity™
CONVERSANT® System Version 7.0 Administration, 585-313-501.

Note: If there are too many traces running simultaneously on a system,
the buffer in which this information is stored may be filled and
some data lost, with no notice of this in the trace output.

The first argument is evaluated as a number and is used as a step identifier.
The optional argument can be used to print a specific data value of interest.
The optional argument may be any integer type or a null terminated character
string.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 550

Examples The instruction

trace(1000)

in a script running on channel 2 produces the following line in the output of
the trace command if it is being run for that channel.

CH002: <script>: STEP: 1000.

where <script> is the name of the script running on channel 2.

The instruction

trace(1000, "Accessing Customer Database")

in a script running on channel 21 produces the following line in the output of
the trace command if it is being run for that channel.

CH021: <script> STEP: 1000 VALUE: Accessing Customer Database

See Also talk
tchar
tflush

tstop

Name This script instruction stops play on a conversation.

Synopsis tstop([wait])

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 551

Description The tstop instruction lets the script programmer stop any voice function
(playing, coding, text-to-speech) on the script’s current play conversation.

The optional wait argument can be used to cause the script to wait for voice
activity to cease before continuing. Valid values for the wait flag are 0 (the
default) to not wait and 1 to wait. If the wait flag is set, the successful return
values of the stop instruction depend on what voice function has been
stopped. If the wait flag is not set, the tstop instruction returns 0 in r.0 for
success or -1 for failure.

If voice coding has been stopped, script r.0 contains the phrase number (a
positive integer) of the coded phrase, r.1 contains the phrase length, and r.2
is set to 1 (see the vc instruction). Otherwise, r.0 will be set to 0 and r.1 and
r.2 will not be changed.

It is strongly recommended that the tstop instruction always be used with the
wait flag set to 1. This ensures that any voice activity on the channel is
stopped before the script continues execution. Failure to wait may leave
TSM in a state that causes subsequent operations of the script (playing,
coding, dialing, etc.) to fail. The default (no wait) is supported for older scripts
which depend on its behavior.

One example where it may be useful to use tstop without the wait flag set is
in a script event interrupt routine (see the event instruction). If this is done,
the interrupt routine should not perform any instructions involving voice
activity or telephony functions after doing the tstop (no wait). It also should
return with r.0 set to a non-negative value so that original wait continues at
the point of interruption (see the rts instruction). The script will continue from
this point once the speech activity has actually stopped.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 552

Example In the following example, the script plays the phrase “music” while it
processes the transaction with the host computer. After this processing
completes, the music is stopped, and the caller is informed of the results.

talk(int.MUSIC) /* Play music to the caller */
tflush(1,1) /* Do not let touch tones turn off music and don’t wait */
dbase(0,FUDB,ch.ACCOUNT_ID,8,int.SELL_PRICE,4) /* Get info from
host */

tstop(1)
talk("Your account has now been credited with Lucent Technologies
stock for the price of")
tnum(int.SELL_PRICE)

See Also tflush
vc()

ttclear

Name This script instruction clears the touch-tone buffer.

Synopsis ttclear()

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 553

Description The ttclear instruction clears the touch-tone buffer. This instruction is useful
for applications in which you want to throw away all “typed ahead” input.
Ttclear removes any touch tones in the touch-tone buffer when the instruction
is executed. The number of touch tones cleared is stored in Register 0.

Example ttclear()

ttdelim

Name This script instruction defines touch-tone key functions.

Synopsis ttdelim(erase-char,erase-all,delim1,delim2)

Description The ttdelim instruction sets four control functions and the touch tone keys
used by the caller to perform those functions. The functions for the
erase-char and erase-all arguments are defined by the system; the functions
for the delim1 and delim2 arguments are defined by the developer. The
touch tone keys for performing all four functions are defined by the developer.

The system-defined functions erase-char and erase-all do not terminate the
collection of touch tones initiated by the getinput or getdig instruction and
those characters are removed from the buffer; whereas, the
developer-defined functions delim1 and delim2 terminate the collection of
touch tones and those characters remain in the buffer.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 554

The touch-tone buffer is scanned for the delimiters currently in effect when a
getinput or getdig instruction is executed rather than while the touch tones
are entered.

The values for the ttdelim arguments are:

The following functions and characters might be specified for the instruction:

ttdelim(’#1’,’#*’,’*1’,’*2’)

Value Meaning

-1 Function is not used (default)

0 Do not change value of current function

’c’ or ‘cc’ New value where c is: 0–9, #, *, or A–D (only on
extended keypad, such as an operator console)

Characters Meaning

#1 Erase one character

#* Erase all characters

*1 Get operator

*2 Play help message

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 555

If a script does not use the ttdelim feature, then this instruction is not used.
On the other hand, if it uses only one argument, then a default value must be
entered for the other three arguments.

An example of a ttdelim instruction using only the erase-all function is:

ttdelim(-1,’#’,-1,-1)

To allow for the extra digits requested by a delim1 or delim2 argument, the
getinput or getdig instruction should specify more digits than it needs. For
instance, if a 5-digit entry is required, but it is anticipated that a caller might
enter all incorrectly, and need to erase them, getinput or getdig would
require a minimum of seven digits.

The ttdelim instruction works with the getinput (or getdig) and tttime
instructions. For example, after requesting 5 digits with a getinput or getdig
instruction, normally r.0 is set to 5 and the actual digits received are stored at
the destination. Whenever the ttdelim instruction is used, the getinput or
getdig instruction has to check the values of r.0 and the received digits to
determine if delim1 or delim2 was used.

Based on the previous arguments for the ttdelim instruction, the getinput or
getdig instruction would have the results given by the following examples.

Input r.0 Destination Script Action

12345 5 12345 Use 5 digits

123#*45678 5 45678 Use 5 digits

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 556

The timeouts for the two system defined functions, erase-char and erase-all,
are the same. The tttime instruction only uses the firstdig argument once,
but it repeatedly uses the interdig argument to wait the maximum amount of
time specified to receive the next digit.

The script writer needs to write code to implement the functions. For
example, delim2 would need a talk instruction to play the help message.

Example The following example causes the last digit to be erased when the #1-keys
are pressed, the entire entry erased when the “#” key is repeated, and the
entry terminated when the *-key is pressed. The value -1 indicates that the
fourth argument is not used.

ttdelim(’#1’,’##’,’*’,-1)

Note: Difficulty could arise with conflicting definitions (for example, # and
#1). Since both a single character string and double character
string are permitted, the system may respond when the first # key
is pressed and never read the second key.

Note: Any additional significance attached to the “*” key entry, other than
entry termination, must be written into the script.

12*1 4 12*1 Transfer to operator

*1 2 *1 Transfer to operator

12*2 4 12*2 Play help message and reprompt for input

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 557

Note: The digits entered at the delimiter must be accounted for in the
getinput or getdig instruction. For example, if 8 digits plus a
touch-tone terminator are expected, getinput or getdig must look
for 8 digits plus the length of the touch-tone terminator.

ttintr

Name This script instruction selectively identifies touch-tones that interrupt speech

Synopsis ttintr(ctype.ttstr, ctype.prev_ttstr)

Description ttintr() sets the TouchTone (TT) interrupt mask to the string indicated by
ctype.ttstr and copies the previous mask value to ctype.prev_ttstr. The TT
interrupt mask determines what touch-tones interrupt speech playing or
coding for the script. If char.-1 is used for ctype.prev_ttstr, then the previous
mask value is not returned. If char.-1 is used for ctype.ttstr, then the current
mask value is not changed.

Return Values ttintr() returns 0 in register 0 (r.0) for success and -1 for failure.

Examples The following example sets interrupt mask so only digits 1, 2 or 3 interrupt
coding or playing, and stores previous mask at the address defined by
PREV_INTRMASK.

ttintr("123", char.PREV_INTRMASK)

See Also ttmask()

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 558

ttmask

Name This script instruction selectively identifies touch-tones that can be reported

Synopsis ttmask(ctype.ttstr, ctype.prev_ttstr)

Description ttmask() sets the TouchTone (TT) input mask to the string indicated by
ctype.ttstr and copies the previous mask value to ctype.prev_ttstr. The TT
interrupt mask determines what touch-tones are received as input by the
script. If char.-1 is used for ctype.prev_ttstr, then the previous mask value is
not returned. If char.-1 is used for ctype.ttstr, then the current mask value is
not changed.

Return Values ttmask() returns 0 in register 0 (r.0) for success and -1 for failure.

Examples The following example sets input mask so only digits 2, 4, 6, or 8 are
received, stores previous mask at address defined by PREV_INPMASK.

ttmask("2468", char.PREV_INPMASK)

The following example sets the mask back to its previously stored value.

ttmask(char.PREV_INPMASK, char.-1)

See Also ttintr()

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 559

tttime

Name This script instruction sets the time-out values for touch-tone input.

Synopsis tttime(type.firstdig,type.interdig)

Description The tttime instruction allows a script to set the touch-tone timeout values.
Firstdig specifies the maximum seconds that the system should wait to
receive the first touch-tone digit after executing a getinput or getdig
instruction. Interdig specifies the maximum seconds to wait between two
consecutive touch tone inputs. The default values are 10 seconds to wait for
the first touch-tone digit and 10 seconds to wait between consecutive touch
tones. There are no limits to timeout times.

The tttime instruction is related to the getinput or getdig instruction. If the
firstdig time is exceeded, r.0 is set to 0 and the getinput or getdig instruction
terminates. If the interdig time is exceeded, r.0 is set to the number of digits
that are received, transferred to the script buffer, the getinput or getdig
instruction terminates.

Example In the following example, before asking a caller for a response, the tttime
instruction sets the system to wait no more than 4 seconds for the caller’s
initial response and up to 2 seconds between digits before automatically
returning from the data gathering instruction.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 560

GET_IO_MODE:

 tttime(4,2)
 talk("enter your id now")

vc

Name This script instruction codes a phrase and stores it in a talkfile.

Synopsis vc(flag,type.time,type.rate[,wait_flag])

Description The vc instruction codes speech into a phrase in a talkfile. For the flag.type
argument, ’b’ (for “begin coding”) is accepted. Another character value, ’p’
(for “prompt”) may be used to play a short “beep” just before voice coding
starts.

The type.time argument specifies the maximum duration, in seconds, of the
coding session. A value ’n’ for type.time specifies a coding session lasting up
to ’n’ seconds. A value of -1 or 0 for type.time specifies the default maximum
duration of 45 seconds. Coding can be terminated at any time by entering a
touch tone.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 561

The type.rate argument specifies the coding rate in kilobits per second. The
valid coding types and rates are defined in the header file codestyle.h. If the
value given for this argument is not a valid rate or type, the instruction fails.
In addition to coding types, two modifiers are defined in codestyle.h that can
be used to turn off silence trimming (NO_SIL) and automatic gain control
(NO_AGC) during voice coding. To use these features, the corresponding
modifier must be ORed together with the coding type. The following
examples show how to start voice coding for a maximum of 60 seconds using
the ADPCM32 coding type and no automatic gain control:

load(int.CODETYPE, ADPCM32)
or(int.CODETYPE, NO_AGC)
vc(‘b’, 60, int.CODETYPE)

The default value for the optional wait_flag argument is 1, which causes vc()
to return when voice coding is complete. If this argument is used with a value
of 0, vc() will return immediately after voice coding has started, allowing the
script to execute more instructions while doing voice coding. This is useful
for doing voice coding and speech recognition (with the getinput() instuction)
simultaneously. The script can record what the caller is saying while it is
being recognized.

Note: Do not use barge-in (speak with interrupt) during simultaneous
processes of recognition and coding. Also, the simultaneous
processes should not occur on the same SSP circuit card. Set the
Tip/Ring circuit card to talk mode.

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 562

When voice coding is started without waiting for completion, vc() returns a
value of 0 in register 0 (r.0). Voice coding must be stopped at a later time by
the tstop() instruction with the optional wait_flag argument set to1 to get the
return values (r.0, r,1, and r.2) from the completed voice coding.

If the vc instruction is successfully completed, it returns the phrase id in
register 0. If the vc instruction is not successfully completed, it returns a
negative value in register 0. A -1 in register 0 means coding failed, -2 means
the initial silence timeout set by vctime was exceeded. When voice coding is
started without waiting for completion, vc() returns a value of 0 in register 0.
Register 1 contains the recorded message length in seconds. Register 2 is
set to 1 if coding completed normally, 2 if was coding terminated by touch
tone, and 3 if the intermediate silence timeout set by vctime is exceeded.

Examples In the following example, a beep will sound, then a phrase will be coded for a
maximum of 100 seconds using ADPCM at a rate of 32Kbps.

load (int.TIME,100)
vc (’p’,int.TIME,ADPCM32)

In the following example, a phrase will be coded for a maximum of 120
seconds using sub-band coding at a rate of 16Kbps. No beep will sound.

load(short.RATE,SBC16)
vc(’b’,120,short.RATE)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 563

In the following example, the vc() instruction uses the optional wait_flag
argument to allow voice coding and recognition at the same time.

#include "irDefines.h"
#include "/att/include/codestyle.h"
/* Answer phone */
tic(’a’)
/* Reserve a phrase */
phreserve(65535, 103, 20, ADPCM32)
jmp(r.0 < 0, L__quit)
load(int.PHRASE, r.1)/* phrase id */
load(int.TFILE, r.0)/* talk file number */
/* Play prompt. Must play prompt before voice coding
 * is started. Coding and playing cannot be done
 * simultaneously. This means that barge-in can’t be
 * done while coding and recognizing simultaneously.
 */
talk("please say 1, 2, 3, 4, or 5")
tflush(1)

/* no silence timeouts (or, silence timeouts must be
 * significantly greater than getinput timeouts (see
 * tttime instruction)

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 564

 */
vctime(0, 0)
/* set input timouts */
tttime(5, 5)
/* start coding with no wait.
 */
vc(’b’, 20, ADPCM32, 0)
/* get recognition input form caller. */
recog_start(IRD_WHOLE_WORD, US_4dig, 0)
getinput(ch.CI_VALUE, 4)
load(int.NUM_DIGS_GOT, r.0)
/* stop voice coding and wait for code complete*/
tstop(1)
/* return vales from tstop() are the same as for vc().
 */
load(int.PHRASE, r.0)
load(int.LENGTH, r.1)
load(int.STATUS, r.2)
L__quit:
quit()

See Also tstop()

B Summary of TAS Script Instructions TAS Script Instruction Syntax

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 565

vctime

Name This script instruction sets the silence timeouts for voice coding.

Synopsis vctime([type.src] [type.src])

Description The vctime instruction allows the script writer to set silence timeouts. The
first type.src argument contains the value for the initial silence timeout. The
second type.src argument contains the value for the inter-word silence
timeout. The maximum timeout is 30 seconds.

The values for the type.src arguments and the effect on the timeout are given
below:

A comma or place holder with a value of 0 is used when an argument is not
inserted. This instruction does not give a return value to indicate success or
failure.

Example In the following example, initial silence timeout and inter-word silence timeout
are set to three seconds.

vctime(3,3)

Value Effective Timeout Value

X > 0 X becomes the timeout value

X = 0 Timeout is turned off

X < 0 Timeout is set to default value (5 seconds)

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 566

C C-Library Functions

Overview

This appendix contains summaries of the C-library functions discussed
earlier in this book. This chapter is divided into three sections according to
the library in which the functions reside: libspp.so (was libspp.a), libalerter.a,
or liblog.a.

The functions are listed in alphabetical order under the library in which they
are located. Each function appears on a separate page including the
following information:

• Function name and syntax

• Purpose of the command

• Effects of using the library function

• Examples of the function

Use these library pages to locate detailed information about each function.

C C-Library Functions Purpose

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 567

Purpose

The purpose of this appendix is to provide application developers with the
information required to use the available C-library functions to develop an
application.

C-Library Function Locations

Table 33 on page 568 lists the functions in alphabetical order and the library
in which the function resides. Equivalent INTUITY™ Response Application
Programming Interface (IRAPI) instructions are also listed, if available.

Note: Most libspp.so functions have been replaced by IRAPI functions.
All new data interface processes (DIPs) should be written in terms
of the IRAPI. See Chapter 5, IRAPI, for additional information.

Note: Information about each IRAPI instruction is included in the manual
pages available online on the system in directory /vs/man/cat3 or
/vs/man/cat4.

C C-Library Functions C-Library Function Locations

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 568

Table 33. C-Library Function Locations

Function IRAPI Equivalent Library

db_init irRegister libspp.so

db_pr irTrace libspp.so

db_put irTrace libspp.so

et_send libspp.so

expandLog liblog.a

logDstPri liblog.a

logMsg liblog.a

mesgrcv irWcheck libspp.so

mesgsnd irPostEvent libspp.so

startup irRegister libspp.so

threshold libalerter.a

VSerror libspp.so

VSstartup irRegister libspp.so
1 of 2

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 569

libspp.so Functions

db_init

Name db_init — Initialize and activate trace facility

Synopsis #include <spp.h>
int db_init (qkey)
int qkey; /* message queue key of process */

Description Data interface processes (DIPs) call db_init once at the start to set up the
trace mechanism provided by the system. The qkey is the message queue
key assigned to the process.

VStoname libspp.so

VStoQkey irGetQkey libspp.so

Table 33. C-Library Function Locations

Function IRAPI Equivalent Library

2 of 2

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 570

From then on, processes can use db_pr and db_put to write out trace/debug
messages. These trace messages then can be displayed on the command
line by using the trace command (see Intuity CONVERSANT System Version
7.0 Administration, 585-313-501). On behalf of the process, VSstartup and
startup call db_init so this function does not have to be called directly.

Diagnostics No indication of success or failure is returned. If it fails, the dp_put message
appeas on standard error (stderr) and db_pr messages are ignored.

See Also db_pr
db_put
startup
trace
VSstartup

db_pr

Name db_pr — Conditionally output trace message

Synopsis #include <spp.h>
int db_pr (format)
char *format; /* printf(3S) format string */

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 571

Description db_pr writes out the string formed using the same printf conventions to the
trace buffer if the calling process now is being traced. (See the SCO
UnixWare documentation for additional information on printf). If the process
is not being traced, db_pr does nothing. If also does nothing if the trace
facility was not initialized through db_init. db_pr calls db_put after forming the
string to write out.

The db_pr messages can be displayed on the standard out (stdout) through
the trace command.

Examples db_pr("%s: Got Message on channel=%d\n”, "Dip", 5);

Diagnostics No indication of success or failure is returned.

Warning db_pr can apply up to a maximum of nine arguments to the specified format
string.

See Also db_init
db_put
trace

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 572

db_put

Name db_put — Unconditionally output a string to the trace buffer

Synopsis #include <spp.h>

int db_put (string)
char *string; /* string to write out */

Description The dp_put function writes the string to the trace buffer regardless of
whether the calling process now is being traced. It writes the string as it is to
standard error if the trace facility was not initialized through db_init. Before
writing to the trace buffer, it splits the output string into 78 character lines (if
necessary) to fit in the buffer.

The db_put message can be displayed on standard out (stdout) through the
trace command.

Examples db_put ("DIP: Got a Message ");

Diagnostics No indication of success or failure is returned.

See Also db_init
trace

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 573

et_send

Name et_send — Send error message to ET

Note: This function is obsolete in the Version 5.0 logger/alerter
environment.

Synopsis #include "spp.h"

int et_send (chan,msg_id,e_arg0,e_arg1,e_arg2,e_arg3,e_strarg)
int chan; /* channel in lower 2 bytes, board in upper 2 bytes*/
int msg_id; /* value of mnemonic #defined for error type */
int e_arg0; /* integer argument */
int e_arg1;/* integer argument */
int e_arg2; /* integer argument */
int e_arg3; /* integer argument */
char *e_strarg; /* string argument */

Description et_send is used to notify ET of an error in the calling process. It sends an IPC
message to ET with the specified arguments. Errors are identified by their
error ids (msg_id) and should be unique across all errors known to ET. See
the files under /att/msgipc/etmsgs for the errors currently known to ET.

ET generates the text description of the error by applying the arguments
e_arg0 through e_arg3 and e_strarg to the rule associated with the given
error (msg_id). The rule also tells ET what action to take; this usually
translates to logging the error and text description. The error log can be
displayed through the Event Log Report menu via the cvis_menu command.

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 574

Set the channel number to -1 if you are not sure of the channel and board
number. This is important because if the channel and board number are
incorrect, ET will reject the message. The advantage to specifying the
channel and board number, if you know them, if that the message will identify
the board and channel on which the error occurred. Set any of the integer
arguments (e_arg0 through e_arg3) to -1 and the e_strarg to the empty string
(“ ”) if they are not used.

Example Assume that msg_id, DIP_FILE_ERR is known to ET and it substitutes the
arguments to et_send using the following format string:

"database DIP:channel %chan: %st error (errno=%arg0)"

The actual chan, e_strarg, and e_arg0 arguments passed to et_send replace
%chan, %st, and %arg0, respectively. The above format string would be
used as part of the rule associated with DIP_FILE_ERR. The following
example displays the code fragment for sending the DIP_FILE_ERR:

extern int errno: /* (see intro(2)). */
int fd;
int chan;
char but[32]
/* Assume working on channel 10 on board 1 but usually
* information would not be hardcoded as in this example.
* Instead, the channel number is extracted from an IPC
* message that is usually sent by a TSM script.
*/

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 575

chan = 10|(1>>16);
fd = open("customer"); /* customer records are kept here */
if (fd < 0) {

/* Assuming that errno is set to 13 (access denied),
* the following et_send message will be logged as
* "databaseDip: channel 10: OPEN error (errno=13)"
*/
et_send(chan, DIP_FILE_ERROR, errno, -1, -1, -1, "OPEN");
/* abort further processing with this file */

} else { /* open worked */
noBytes = read(fd, buf, 32);
if (noBytes < 0) {

/* Assuming that errno is set to 4 (interrupted call).
* The following et_send message will be logged as
* "databaseDIP: channel 10: READ error (errno=4)"
*/
et_send(chan, DIP_FILE_ERROR, errno, -1, -1, -1,

"READ")"
/* abort further processing with this file */

}
}

Diagnostics et_send does not return any indication of success or failure. If it fails to send
the IPC message, et_send prints out a diagnostic on standard output
(stdout).

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 576

Warning et_send will truncate e_strarg to 64 (ET_MAXSTR-1) characters if necessary
and will not print out a diagnostic when this happens.

mesgrcv

Name mesgrcv — Get an IPC message

Synopsis #include <sys/types.h>
#include <sys/msg.h>
#include <sys/ipc.h>
#include "mesg.h"
#include "spp.h"

int mesgrcv (morig,msgp,msgsz,msgtyp,msgflag,msgrtime)
int morig
union msgunion *msgp; /* message buffer */
int msgtyp; /* type of message to read */
int msgsz; /* size of message buffer */
int msgflag; /* control flag */
long *msgrtime; /*message receive time */

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 577

Description mesgrcv is used by the voice system to read IPC messages off their
message queues. It is the front-end to the UnixWare system call, msgrcv.
mesgrcv reads the next IPC message on the message queue (morig) and
stores up to msgsz bytes in the buffer pointed to by msgp. The buffer should
be as large as the largest message to be read. Otherwise, by default,
mesgrcv will discard the message if its size is greater than msgsz. However,
if (MSG_NOERROR & msgflag) is true, the message will truncated to fit in
the buffer (see msgop(2) in the UnixWare Command Reference).

mesgrcv can read messages of a certain type selectively as specified by
msgtyp. See msgop(2) for the possible values for msgtyp. Set msgtyp to
zero to read the first message on the queue regardless of type.

By default mesgrcv waits indefinitely for a message to arrive on the queue if
there is none currently to be read. However, if (msgflag & IPC_NOWAIT) is
true, mesgrcv returns immediately with a -1 and errno is set to ENOMSG
when no message is found on the queue. mesgrcv also returns (in msgrtime)
the time the message was read and stored in the buffer (*msgp) if
IPC_GTIME & msgflag is true. The mesgrcv function creates the IPC
message queue for queue key morig if necessary.

Example The following are examples of code fragments using mesgrcv to receive IPC
messages. The examples assume that a TSM script is sending two types of
messages. One contains the caller’s personal information and the second
contains the caller’s order for a specified number of widgets.

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 578

/* Definition of the message structures and definitions
* used in the examples below.
*/
#include <sys/errno.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <stdio.h>
#include "spp.h"
#include "mesg.h"

typedef enum {VISA,AMEX} CREDIT_CARD_TYPE;

/* Define messages to receive */
struct callerinfoMsg {

struct mbhdr hd; /* see mesg.h */
CREDIT_CARD_TYPE creditCard; /*VISA, AMEX */
int creditCardNo; /* employee number */

};
#define CALLER_INFO 6910 /* message id */

struct orderMsg {
struct mbhdr hd; /* see mesg.h */
int noWidgetsOrdered; /* employee number */

};

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 579

#define ORDER_AMOUNT 6930 /* message id */

/* Actual area for receiving messages.
* Compose of all expected messages.
*/
union msgBuffer {

struct orderMsg order;
struct callerinfoMsg caller;

} MsgRcvArea;

union msgBuffer *Msgp = &MsgRcvArea;

extern int errno;

char *Myname = "WidgetDip";
int myQkey; /* my very own message queue */
int noBytesRead;
long Msgrtime;

/* Dummy function that contains the examples.

void
receiveExamples()
{
/*******Example I

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 580

* To read the first message on the queue and find out
* what message you got:
*/
int howMany;
CREDIT_CARD_TYPE cardType;
int cardNo;

noBytesRead = mesgrcv(MyQkey,Msgp,sizeof(union msgBuffer),
0,0,NULL);

if (noBytesRead > 0) { /* no error */
/* Time to unpackage the message and find out
* what message arrived.
*/
switch (Msgp->order.hd.mcont) {

case ORDER_AMOUNT:
howMany=Msgp->order.noWidgetsOrdered;
/* Process order */
break;

case CALLER_INFO:
cardType=Msgp->caller.creditCard;
cardNo=Msgp->caller.creditCardNo;
break;

default:
/* Unknown message received.
* Notify someone and probably go back

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 581

* and read something else.
*/
;/* null statement to make code compile for this example */
}
} else {
/* Could not read message for some reason.
* Depending on the error, might want to re-try reading.
* Check errno if noBytesRead==-1.
*/
}

/*******Example II
* To read message without waiting if there’s none now.
* And to get the time the message was read:
*/
noBytesRead= mesgrcv(MyQkey,Msgp,sizeof(union msgBuffer),0,

IPC_NOWAIT, &Msgrtime);
if (noBytesRead == -1 && errno == ENOMSG) {

/* No message is on the message queue.
* Do some other work and then come back and re-read queue
*/

} else if (nobytesRead > 0) {
db_pr("%s: got message on %ld\n, MyName, Msgrtime);
/* process message */

} else {

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 582

/* some other error occurred */
; /* null statement to make code compile */
}

}

Diagnostics Upon successful completion, mesgrcv returns the number of bytes read,
ranging from 1 to msgsz. Otherwise, one of the following negative values is
returned:

• -1 — An error occurred in msgrcv and errno is set accordingly

• -2 — Can not create or get the message queue

• -3 — Destination qkey is not in the voice system range (1–95)

• -4 — Message was too big for the buffer and so it got discarded and
(MSG_ERROR & msgflag) was false. No message was read. The size
of the message buffer is too small.

See Also msgop(2) (UnixWare Command Reference)
msgsnd(2(2)) (UnixWare Command Reference)

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 583

mesgsnd

Name mesgsnd — Send an IPC message

Synopsis #include "spp.h"

int mesgsnd (mdest, msgp, msgsz, msgflag)
int mdest; /* Message Qkey to send to */
union msgunion *msgp; /* message to send */
int msgsz; /* size of message */
int msgflag; /* flag for controlling send */

Description mesgsnd sends the IPC message pointed by msgp to qkey mdest. The
number of bytes in the message is specified by msgsz. The message
consists of the header and data parts. The header is defined as struct mbhdr
in mesg.h. The size of message (msgsz) should include the header and data
parts. Mesgsnd actually sends the message by calling the UnixWare system
call msgsnd. Msgflag is sent directly to the UnixWare system call msgsnd.

mesgsnd creates the IPC message queue for qkey mdest if necessary.
When returning dbase messages to TSM, it is necessary to include the
channel number value which originally came from TSM.

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 584

Example The following is an example of a function that sends employee information to
the TSM script running on the specified channel.

#include "spp.h"
#include "mesg.h"
/* Define message to send */
struct employeeMsg {

struct mbhdr hd; /* see mesg.h */
char ename[25];/* employee name */
int payrollNo; /* employee number */

};
#define EMPLOYEE_INFO#7890/* message id */

extern int MyQkey; /* sender’s Qkey */

int
sendEmsg(chan, ename, enumber)
int chan;
char *ename;
int enumber;
{
Struct employeeMsg emsg;
int retcode;

/* Package Message */
emsg.hd.mchan = chan;

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 585

emsg.hd.mtype = 1;/* should be positive non-zero */
emsg.hd.morig = MyQkey;
emsg.hd.mcont = EMPLOYEE_INFO;
emsg.hd.mseqno = 0;/* set to zero for safety */
strcpy(emsg.ename, ename);
emsg.payrollNo = enumber;

retcode = mesgsnd(TSM, &emsg, sizeof(emsg), 0);
return(retcode);
}

Diagnostics Upon successful completion, mesgsnd returns zero (the value returned by
msgsnd system call). Otherwise, one of the following negative values is
returned:

• -1 — An error occurred in msgsnd and errno is set accordingly

• -2 — Can not create or get the message queue

• -3 — Destination qkey (mdest) is not in the voice system range (1–95)

• -4 — The size of the message is too small (less than 4 bytes)

See Also msgop(2) (UnixWare Command Reference)

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 586

startup

Name startup — Called once to initialize hardcoded processes to the voice system

Synopsis #include spp.h

int startup (qkey, slot_offset)
int qkey; /* message qkey of calling process */
int slot_offset; /* used to get the slot for posting */

Description startup registers and initializes the calling process to the voice system. It
should be called once at the onset and is used by hardcoded processes (that
is, those that know beforehand what message queue they will use to receive
IPC messages). startup posts the process in a certain pre-defined slot in the
Bulletin Board (BB). The calling process has some control over what slot is
selected. The slot selected depends on the qkey and slot_offset specified.

Note: It is recommended that user DIPs use VSstartup when possible.
See the discussion of VSstartup later in this section.

It is important that processes choose a qkey and slot_offset that translates to
a unique message queue and slot. The bbs command can be used to find
out what processes are currently posted, to avoid interfering with another
process. For DIPSs (identified by qkeys in the range from 20–54), startup
selects a slot using the following equation:

slot = 32 + slot_offset

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 587

The slot_offset for DIPs must be between 0 and 34 or the slot_offset is set to
zero. DIPs can read from the same message queue by specifying the same
qkey but different slot_offsets.

In addition, startup initializes the trace facility so that the process can write
out trace message using the db_pr family of functions.

startup is the old way of initializing hardcoded processes to the system and
still is supported. New processes, however, should use VSstartup for
initialization.

Specifically, startup does the following:

1 Calls the db_init library function to set up the trace facility for the calling
process

2 Attaches the BB and initializes the global BB variables used by the rest of
the interface functions

3 Posts the calling process in the BB base on its qkey and slot_offset

4 Acquires the process semaphore associated with the slot

5 Sets up the calling process to catch the SIGTERM and invoke the
standard exit library function.

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 588

Examples The following code fragment initializes a DIP with qkey DIP15 (as defined in
mesg.h) and posts it in slot 47.

#include mesg.h
#include spp.h
/* No need to check the return code from startup since
* it is successful if it returns at all.
* DIP15-DIP0 is actually the DIP number for the DIP (15).
* Remember slot = 32 + DIP15–DIP0 = 32 + 15 = 47.
*/
(void) startup (DIP15, DIP15-DIP0);

Diagnostics Upon successful completion, startup returns zero. It does not return if
unsuccessful. startup writes out a trace message and terminates the calling
process if an error is encountered. Possible errors include:

• Can not attach to the BB

• Can not create the process semaphore

However, in one case startup does not terminates. If another process is
already posted in the slot, startup waits indefinitely until the process can post
itself in the slot that already contains a posted process.

See Also db_pr
trace
VSstartup

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 589

VSerror

Name VSerror — Get text for voice system error messages

Synopsis #include <sys/types.h>
#include VS.h
char *VSerror (errid)
int errid: /* negative error value */

Description VSerror returns a character string explaining what the specified error id
means. Error ids equal to negative one (-1) are treated as UnixWare system
errors and the appropriate text in the UnixWare error table (sys_errlist[]) is
returned. Error ids defined in VS.h and UnixWare system errors have text
associated with them; all other errors are unknown to VSerror and result in a
generic UNKNOWN message being returned.

Currently, the error return values from VSstartup and VStoqkey and from the
underlying Bulletin Board interface functions are recognized by VSerror.

Examples char *emsg;
key_t Qkey;
/* find the qkey of the speech recognition dip */
Qkey = VStoqkey(spRecog);
if (Qkey <= 0) {

emsg = VSerror(Qkey);

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 590

fprintf(stderr,VStoqkey failed; %s\n, emsg);
}

See Also intro

VSstartup

Name VSstartup — Called once to initialize process to the voice system

Synopsis #include <sys/types.h>
#include VS.h

key_t VSstartup (procName, instance, flag)
char *procName; /* name associated with process */
short instance; /* process instance */
long flag; /* Is process a DIP? */

Description VSstartup is called once to initialize a process to the system. VSstartup
returns the DIP name, its instance, and a DIP flag. The DIP flag can take one
of two values, constants DIP_PROC or NONDIP_PROC. Setting the flag to
the constant DIP_PROC allows the DIP to send messages to and receive
messages from TSM scripts. If the flag is set to the constant
NONDIP_RPOC, messages sent by the IDP to TSM scripts are ignored by
TSM.

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 591

Processes specifying the same procName and difference instance numbers
will be assigned the same message queue key to read from, but will be
posted in separate Bulletin Board (BB) slots.

The instance can be any arbitrary value in the range from 0 to 32767.
However, the instance should be unique across processes using the same
procName. A common use of the instance number is to differentiate between
multiple copies of a process.

Specifically, VSstartup does the following:

1 Attach the BB and initialize the global BB variables used by the rest of the
interface functions

2 Post the calling process in the BB and get its dynamically assigned Qkey

3 Acquire the process semaphore associated with the slot

4 Calls the db_init library functions to set up the trace facility for the calling
process

Upon encountering an error, VSstartup will immediately return a pre-defined
negative value.

Example /* Post instance 0 of process xferdip as a DIP */
#define TRANSFER_DIP “xferdip”
key_t Qkey;
char *emsg;
Qkey = VSstartup(TRANSFER_DIP, 0, DIP_PROC);

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 592

if (myQkey <= 0) {
db_pr("%s: Can’t get qkey: VSstartup: %s\n”;

VSerror(myQkey));
logMsg(APPL_INITFAIL,EL_FL,Myname,"Can’t get qkey");
sleep(5); /* to slow down continuous respawning */
exit(1);

}

Diagnostics Upon successful completion, the assigned Qkey is returned. Errors in the
VSstartup indicate failure in assigning a message queue key, in which case
one of the following negative values is returned.

VS_EINVALprocName argument cannot be NULL

VS_ELENLength of procName is out of range

VS_ERESVprocName is reserved for hardcoded processes

VS_ENOPRTNon-printable character found in procName

VS_ENUMInstance is negative or out of range

VS_BADPROCAnother process with the same procName and
instance is running already

VS_ENOFREENo BB slots available for posting process (see
troubleshooting information in Chapter 4, Data Interface Processes for
more information)

VS_ESHMATCan not attach the BB shared memory

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 593

See Also VSerror

VStoname

Name VStoname — Find the procName of the given message queue key

Format #include <sys/types.h>
#include <stdio.h>
#include VS.h

char *VStoname(Qkey)
key_t Qkey; /* message queue key */

Description VStoname searches the voice system Bulletin Board (BB) and returns a
pointer to the procName associated with the specified message queue key.
VStoname will return the procName of hardcoded processes (processes not
using dynamic Qkey numbers) as well as dynamic processes. If the
message queue key is not found, VStoname will return a NULL. VStoname
will also return a NULL if the BB is not attached using BBattach.

VStoname attaches the BB if not attached through VSstartup. Before
returning it detaches the BB if it attached it to begin with.

Warning The returned procName pointer refers to a static area whose content is
overwritten by each call to VStoname.

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 594

See Also VStoqkey

VStoqkey

Name VStoqkey — Find the message queue key of the given process name

Synopsis #include <sys/types.h>
#include VS.h

key_t VStoqkey(procName)
char *procName; /* unique name associated with process */

Description VStoqkey searches the voice system Bulletin Board (BB) and returns the
message queue key (Qkey) associated with the specified procName. If the
procName is not found, VStoqkey will assign an unused Qkey and BB slot to
the procName. The slot is then partially posted with the procName and Qkey.
VStoqkey will return the Qkey of hardcoded processes (processes not using
dynamically assigned Qkey numbers) as well as of dynamic processes.

VStoqkey waits to acquire the lock (process semaphore) on the BB before
searching and writing, and releases the lock before returning to the calling
routine.

VStoqkey attaches the BB if not attached through VSstartup. Before
returning it detaches the BB if it attached it to begin with.

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 595

! CAUTION:
Each call to VStoqkey involves a linear scan of the Bulletin Board. Therefore,
it is recommended that a process call VStoqkey once for each procName it
expects to reference and internally stored the returned Qkeys before entering
its main processing loop. From then on, VStoqkey need not be invoked since
the Qkeys are already available (see example for VStoqkey).

Also be aware that a process conceivably could use up all the VS message
queues by repeatedly calling VStoqkey with non-existent procNames.

Examples main () {

key_t DBDIPQKEY;
key_t VCTDIPQKEY;
key_t BRIDGEDIPQKEY;
key_t myQkey;
char *emsg;
int nbytesRead;
long rcvtime
struct ms_univ msg; /* see mesg.h */

/* Post myself in BB and init BB global variables */
myQkey = VSstartup(“CallBridge”, 0, DIP_PROC);
if (myQkey <= 0) {

emsg = VSerror(myQkey);

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 596

fprintf(stderr,“VSstartup failed: %s\n”, emsg);
sleep(20); /* sleep to avoid continuously respawning. */
exit(1);

}
DBDIPQKEY = VStoqkey(dbdip);
VCTDIPQKEY = VStoqkey(vctdip);
BRIDGEDIPQKEY = VStoqkey(bridgedip);
if (DBDIPQKEY < 0 || VCTDIPQKEY <0 ||

BRIDGEDIPQKEY < 0) {
/* Could not get Qkey */
/* Report the using VSerror, et_send error and cleanup */
sleep(10); /* to slow down continuous respawns. */
exit(1);
}
/* main processing loop */
while (1) {

/* read next message queue and switch on sender Qkey */
nbytesRead = mesgrcv(myQkey, &msg, sizeof(msg), 0, 0,

&rcvtime);
switch (msg.hd.morig) {

case DBDIPQKEY:
 /* process message from Database DIP */
 break;
case VCTDIPQKEY:
 /* process message from Voice Coding DIP */

C C-Library Functions libspp.so Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 597

 break;
case BRIDGEDIPQKEY:
 /* process message from bridging DIP */
 break;
default:
 /* unknown sender */
 break;

}
}

}

Diagnostics Upon successful completion, the Qkey value is returned; otherwise one of the
following errors is returned:

• VS_EINVAL procName argument cannot be NULL

• VS_ELEN Length of procName is zero or greater than 15 characters in
length.

• VS_ERESV procName is reserved for hardcoded processes and the
specified procName is not posted already

• VS_ENOPRT Non-printable character found in procNam

• VS_ENOFREE No BB slots available for posting process (see
troubleshooting information in Chapter 4, Data Interface Processes for
more information)

C C-Library Functions libalerter.a Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 598

libalerter.a Function

The following information is provided in this appendix for completeness. This
function is not required for proper operation of the TAS script or DIP, but
some information contained here may be useful.

threshold

Name createMsgCarrier, freeMsgCarrier, ckMsgsOfThreshold, cleanThresholds,
mkThreshold, freeThreshold, threshold, findThreshold, resetThreshold,
printThreshold, setThresholdCleanupInterval — Alerting message threshold
management routines

Synopsis #include <stdio.h>
#include <time.h>
#include “primsdefs.h”
#include “logMsg.h”
#include “threshold..h”

struct MsgCarrier *createMsgCarrier (headp,Imp)
struct Threshold **headp ‘
struct LogMsg *Imp ;

void freeMsgCarrier (headp,msgp)

C C-Library Functions libalerter.a Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 599

struct Threshold **headp ;
struct LogMsg *Imp ;

void ckMsgsOfThreshold (thp)
struct Threshold *thp ;

void cleanThresholds ()

int setThresholdCleanupInterval (newValue)
int newValue ;

typedef void (*DownFunc)(struct Threshold *thp,int previousLevel) ;

int mkThreshold (
msgID,name,period,flags,downFunc,applPtr,cnt[level,...])
int msgID ;/* Index of msg of interest. */
int period ;/* Threshold period in seconds. */
int flags ‘
DownFunc downFunc ;/* Function called when activation level

 * decreased. */
POINTER applPtr :/* Pointer to application specific

 * information about threshold. */
int cnt ;/* # of threshold levels. */
int level ;/* Threshold level as msg count. */

C C-Library Functions libalerter.a Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 600

voicd freeThreshold (thp) ;
struct Threshold *thp ;

int threshold (thp,Imp)
struct Threshold *thp ;/* Threshold description. */
struct LogMsg *Imp ; /* Parsed logging message. */

struct Threshold *findThreshold (name)
char *name ;

int resetThreshold (name)
char *name ;

int printThreshold (name,fp)
char *name ;
FILE *fp ;

Description A Threshold structure is designed to keep track of a number of compressed
logged messages with respect to a specified time period that terminates at
the current time.

struct Threshold
{
struct Threshold *th_next ;
struct Threshold *th_prev ;

C C-Library Functions libalerter.a Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 601

char *th_name ;/* ASCII name of this threshold */
int th_msgID ;/* Message ID of interest. If -1, then
 * any message is acceptable. */
int th_period ;/* # of seconds over which threshold is computed. */
int th_flags ;

#define TH_EDGE_TRIGGERED0x0000/* Respond when level exceeded
*/
#define TH_LEVEL_TRIGGERED0x0001/* Respond whenever above
level */
#define TH_NO_REPORT0x0002 /* Suppress threshold level

 * changes messages. */

DownFunc th_downFunc ;/* Function to call when drops in
 * levels of activation. */
POINTER th_applPtr ;/* Pointer used by application to
 * point to information not
 * contained in the Threshold
 * structure. It is assumed that
 * this pointer will always be type
 * cast to an appropriate type. */
int th_levelCnt ;/* Number of levels */
int *th_levels ;/* Array of levels */
int *th_curLvl ;/* Pointer to the current level */
int th_msgCnt ;/* # of messages currently in storage */

C C-Library Functions libalerter.a Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 602

struct MsgCarrier *th_msgs ;/* Copies of messages currently
 * saved for this threshold. */

} ;

mkThreshold () is used to create a new Threshold structure and link it into the
list of active thresholds. msgID is either -1, meaning that this threshold will
take any message given to it, or the value of one specific message index that
is to be accepted by this threshold. name points to an ASCII string, which is
used to identify this threshold to the external world. It should be unique from
all other threshold names. period is the number of seconds that a message
will be retained by the threshold before it is discarded. flags is used to
identify the characteristics of the threshold. In particular a threshold may be
edge triggered, meaning it responds only when the number of stored
messages crossed a boundary between activation levels, or it can be level
triggered, meaning that whenever a message arrives and the number of
messages is in excess of an activation level, there is a response. To clarify,
consider a threshold that has activation levels of 3 and 6 messages. If it is
edge triggered, it will only respond when the number of stored messages
goes from 2 to 3 or from 5 to 6. If it is level triggered, it will respond with level
1 when messages 3, 4, and 5 arrive and with level 2 whenever the number of
messages is 6 or more. By default, thresholds are edge triggered unless the
TH_LEVEL_TRIGGERED flag is included in the flags word. In addition, it is
possible to suppress reports of activation level changes by including the
TH_NO_REPORT flag. Normally, whenever a threshold is crossed, a
message is automatically generated reporting this fact. These messages are
generated both on the way up and on the way down. When these messages

C C-Library Functions libalerter.a Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 603

are generated, examining the log files will tell you the activation level of each
threshold. When messages age enough, they are removed from storage
within the Threshold structure. If this causes a threshold to drop from one
activation level to a lower activation level, a message will be generated if
TH_NO_REPORT is NOT specified and, if not NULL, the function specified
by downFunc will be called as

(*downFunc)(thp.previousLevel);

This function can handle any application specific activity that is appropriate
as a threshold drops from a higher activation level to a lower level, such as
turning off a light or alarm indicator. If there is additional information that
needs to be stored with a threshold, it can be joined to the Threshold
structure via the applPtr. The form and management of this data is entirely
the responsibility of the application. The pointer is stored in the Threshold
structure in the th_applPtr element. Each threshold has one or more
activation levels. cnt specifies the number of different thresholds. Following
cnt will be that number of threshold levels. They are assumed to be in
ascending order. Each level is the number of messages that must be stored
in the Threshold structure for the threshold to be at that specific activation
level. At least one level must be specified and it may be 0. mkThreshold ()
links the newly created Threshold structure into the list of active threshold
specifications. If it is the first specification, a timer is started, which will
continuously clean up messages as they age. Also the address of the new
Threshold structure is returned so that it can be used in calls to threshold ().

C C-Library Functions libalerter.a Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 604

A Threshold structure can be removed from the active list and its resources
released via freeThreshold (). If any cleanup is required for the th_applPtr, it
is assumed to have been performed by the caller prior to the call to
freeThreshold ().

threshold () compares the index of the message described by lmp with the
th_msgID element of the Threshold structure. If the th_msgID is -1 or if the
index matches th_msgID, threshold () stores the message in the Threshold
structure. If the addition of a new message requires an action based on the
type of threshold, threshold () will return the current activation level of the
threshold. If not action is required, threshold () returns 0. It is the
responsibility of the calling function to respond appropriately to a non-zero
response by threshold ().

lmp is a pointer to a parsed logging message, as returned by either
readParsedLogMsg () or parseCmpLog (). (See readLog (3x).)

threshold () returns 0 whenever a new message is stored and the threshold
still has not risen to its specified first level of activation, or for EDGE triggered
thresholds, whenever the new message is not causing a level transition from
a lower level of activation to a higher level of activation. Any real response to
a change in activation levels of a threshold is the responsibility of the calling
routine. Its response should be dictated by the activation level returned by
threshold (). The only response provided automatically by threshold () is the
generation of the "change of activation level" message, if not suppressed.

C C-Library Functions libalerter.a Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 605

Any message that is retained in the threshold, either because thp->th_msgID
was -1 or because the index of the message matched thp->th_msgID, is
stored in an allocated MsgCarrier structure which has the following form:

struct MsgCarrier
{
struct MsgCarrier *mc_next ;
struct MsgCarrier *mc_prev ;
time_t mc_timeStamp ;/* Time stamp associated with msg */
int mc_msgID ;/* Extracted ID of msg */
char *mc_cmpMsgPtr ; /* Compressed msg */

} ;

These MsgCarrier structures are linked together in a circular list, from oldest
to newest in terms of order of receipt. It is assumed that the messages arrive
in time stamped order.

MsgCarrier structures are created and linked into the circular list associated
with a Threshold structure using the createMsgCarrier () routine. headp
points to the current head of the circularly linked list. If it points to a NULL
pointer, then the newly created MsgCarrier structure becomes the head of
the list. freeMsgCarrier () removes a MsgCarrier from a circularly linked list
and frees the associated storage. It is assumed that the message pointed to
by msgp is one of the MsgCarrier structures associated with the list pointed to
by headp.

C C-Library Functions libalerter.a Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 606

ckMsgsOfThreshold () scans all the messages currently associated with the
Threshold structure pointed to by thp, and removes and discards any that are
older than the time period of the threshold. If this causes the threshold to
drop one or more levels, then appropriate logging messages are generated
unless the TH_NO_REPORT flag is set. ckMsgsOfThreshold () is
automatically called by threshold () whenever it decides to store a new
message. This insures that only messages within the current time period are
on the threshold when the new message is stored.

cleanThresholds () is a timeout routine, arranged to be called by threshold ()
once every 60 seconds or the value specified by
setThresholdCleanupInterval (). cleanThresholds () scans all Threshold
structures for messages that have gotten too old and removes them, logging
appropriate level drops when appropriate. Once started, it automatically
reschedules itself according to the current interval value.
setThresholdCleanupInterval () changes the cleanup interval to the number
of seconds specified by newValue. The previous value is returned.

findThreshold () scans the list of active thresholds and returns the one whose
name matches name. NULL is returned if the proper threshold cannot be
found.

resetThreshold () causes all messages currently stored within a Threshold
structure to be discarded. If name is NULL, all thresholds are reset otherwise
only that threshold specified by name is reset. Resetting a threshold does
result in an appropriate log message if the level of the threshold changes.
FALSE is returned if the specified Threshold structure cannot be found.

C C-Library Functions libalerter.a Function

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 607

printThreshold () causes all messages currently stored within a Threshold
structure to be printed in addition to the parameters associated with the
threshold. All printing is done to the standard I/O stream specified by fp. If
name is NULL, all thresholds are printed otherwise only that threshold
specified by name is printed. FALSE is returned if the specified Threshold
structure cannot be found.

Caveats Use the fast malloc () routines found in -lmalloc because they perform a lot of
allocating and deallocating.

See Also readLog (3x)

timeDesc (3x)

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 608

liblog.a Functions

The following information is provided in this appendix for completeness.
These functions are not required for proper operation of the TAS script or
DIP, but some information contained here may be useful.

expandLog

Name expandLog — Expands a compressed log string

Synopsis char *expandLog (cmpmsg)
char *cmpmsg ;

char *getExpandFmt (index)
int index ;

void endExpandFmt ()

void setExpandFmt (file)
char *file ;

char *getExpansionFmt ()

void chgExpansionFmt (fmt)

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 609

char *fmt ;

int getExpansionCutoff ()

int chgExpansionCutoff (newcol)

int newcol ;

char *getContinuationPrefix ()

void chgContinuationPrefix (fmt)
char *fmt ;

int getVisible ()

int setVisible (newval)

int newval ()

Description The expandLog function takes a compressed log message as produced by
log and expands it to the human readable form using the textLogFmt file
produced by lComp. It returns a pointer to a buffer containing the expanded
message.

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 610

Its behavior is controlled by a number of additional routines. setExpandFmt
changes the name of the expansion format file to file. endExpandFmt causes
the current expansion format file to be closed. getExpandFmt causes the
expansion format specified by index to be read in and a pointer to the
expansion format is returned.

Message expansion is controlled by two different formats. There is a
high-level format, which specifies what pieces of the message to print and
how and a specific format for the information section of the message. The
standard message consists of the following parts:

Priority The priority of the message, which can be printed in one of two
forms, a 2 character string or as a decimal digit. The default is a
two character string.

Time The time of day, which is normally printed in the same format the
routine ctime produces minus the final \n. There is a great deal of
flexibility in printing the time. All printing options supported by
the dateFONT? command.

Name The name of the process

Source The name of the source file where the message was generated

Line The line in the source file where the message was generated.

MessageThe text of the message itself, whose text is the combination of
the compressed data and the message format from the
expansion text file

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 611

The default format is:

%P %T %N %S:%L\n%M

The %P and %T specifiers can take arguments enclosed in ()s.

%P(%s) is the default and specifies that the priority be printed as a two
character string. %P(%d) specifies that the priority be printed as a decimal
digit.

%T() takes the standard date command options,

%m The month of the year, 01–12
%d The day of the month, 01–31
%y The last 2 digits of the year, 00–99
%D The date as mm/dd/yy
%H The hour, 00–23
%M The minutes, 00–59
%S The seconds, 00–59
%T The time of day as HH:MM:SS
%j The day of the year, 001–366
%w The day of the week, 0–6, with Sunday == 0
%a The day of the week as a three letter abbreviation
%h The month as a three letter abbreviation
%r The time of day in HH:MM:SS AM/PM notation
%n A newline character
%t A tab character
%% The ’%’ character

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 612

Any other characters appearing between the ()s to the %T specifier are
printed as is.

getExpansionFmt gets a pointer to the current expansion format.
chgExpansionFmt changes the current expansion format to that specified by
fmt.

Normally, long lines are printed as is, but it is possible to request wrapping of
long lines at a specific column and the continuation lines can be prepended
with a specific prefix, if desired. getExpansionCutoff returns the current
column at which wrapping takes place. If the value is 0, no wrapping is being
performed. chgExpansionCutoff changes the column cutoff to newcol.
getContinuationPrefix returns a pointer to the current continuation line prefix.
The default is none. chgContinuationPrefix changes the continuation line
prefix to that specified by fmt.

Normally all characters are printed as is. It is possible to request that control
and nonprinting characters be made visible. getVisible returns 0 if control
and nonprinting characters are not being made visible, which is the default.
Currently any non-0 value indicates that the control and nonprinting
characters are being converted to visible strings. setVisible sets the printing
characteristics of control and non-printing characters to newval.

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 613

Environment
Variables

The following environment variables are checked once, the first time
expandLog is entered, if the parameter they specify has not already been set
by the application developer.

LOGFORMAT A string specifying the printing format to be used

LOGCOLUMN The column at which line wrapping should take place

LOGCONTPREFIXThe string to be prepended to continuation lines

LOGROOT The directory in which textLogFmt is to be found if the
expansion file is not specified otherwise

Caveats Expansion is performed into a single allocated buffer. If more than one
expansion is done, it is the responsibility of the caller to copy the expanded
message from the buffer if the previous expansion is to be retained while a
new expansion is being done.

Line wrapping and making control characters visible are both performed after
the basic message expansion. They require additional manipulations of the
message buffer and cost machine cycles.

See Also lComp
logCat

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 614

logDstPri

Name createLDParray, getLDPpriority, getLDPdsts, readDstPri, fmtLDPdsts,
writeDstPri, freeLDPcontents, freeLDParray, indexLDPelement,
deleteLDPelement, copyLDPcontents, insertLDPelement,
replaceLDPelement — Routines to read, write, and manipulate the logging
system’s destination/priority assignment file

Synopsis #include log.h
#include logDstPri.h

int createLDParray ()

int getLDPpriority (name,priIndex,dpDA)
char *name,
int priIndex,
int dpDA

struct DstTranslator *appendDstTranslator (dtp,name,index)
struct DstTranslator *dtp ;
char *name ;
int index ;

struct DstTranslator *mkDstTranslator (dpDA)
int dpDA ;

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 615

void freeDstTranslator (dtp)
struct DstTranslator *dtp” ;

int getLDPdsts (spec,dtp,dstp)
char *spec ;/* Destination specification */
struct DstTranslator *dtp ;
unsigned int *dstp ;/* Where to return the destination mask */

int readDstPri (name,fp,errp,checkFlag)
char *name“;/* Name of source - used only in messages */
FILE *fp ;/* Source of input */
int *errp ;/* Pointer to error count */
int checkFlag ;/* If TRUE, generate error messages about errors */

char *fmtLDPdsts (dst,dtp)
unsigned int dst ;
struct DstTranslator *dtp ;

int writeDstPri (dpDA,fpout)
int dpDA ;/* Dynamic array of LDPelement structures */
FILE *fpout; /* Where output written */

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 616

void freeLDPcontents (lp)
struct LDPelement *lp ;

void freeLDParray (dpDA)
int dpDA ;

indexLDPelement (dpDA,lp)
int dpDA ;/* Dynamic array of structures */
struct LDPelement *lp ; /* Ptr to element to be deleted */

void deleteLDPelement (dpDA,index)

int dpDA ;/* Dynamic array of structures */
int index ; /* Index of structure in array */

int copyLDPcontents (lpDst,lpSrc)
struct LDPelement *lpDsp ;
struct LDPelement *lpSrc” ;

struct LDPelement *insertLDPelement” (dpDA,pos,lp)
int dpDA ;/* Dynamic array descriptor */
int pos ;/* Position in array at which to insert structure. */
struct LDPelement *lp ;/* Structure to be inserted. */

struct LDPelement *replaceLDPelement (lpDst,lpSrc)

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 617

struct LDPelement *lpDst ;
struct LDPelement *lpSrc ;

Description createLDParray () creates an initial dynamic array to hold the LDPelement
structures. Normally it would not be called directly until a new file is being
created from scratch. readDstPri () calls it when it reads in an existing rules
file.

readDstPri () reads in a file containing the message priority and destination
information. (See msgRules (4x) for details.) name is the name of the file
containing the information. It is used only to report errors correctly. fp is an
open standard I/O stream descriptor from which the information is read. errp
is a pointer to an integer in which the number of errors detected during the
reading process are returned. checkFlag causes any errors detected to
produce an error message on the standard error stream in addition to an
increment to the error count pointed to by errp.

writeDstPri () writes out the information in the dynamic array described by
dpDA. The information written to the standard I/O stream fpout. A FAILURE
(-1) is returned if nothing can be written otherwise the number of records
written is returned.

freeLDParray () is the means to release the resources allocated by
readDstPri () or the other routines can add things to the dynamic array of
LDPelement structures. When it returns, the dynamic array is closed and all
the resources returned to the system.

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 618

indexLDPelement () converts a LDPelement structure pointer into the index
of the structure within the dynamic array of structures specified by dpDA. A
FAILURE (-1) is returned if the array does not exist, lp does not point to a
structure within the array of structures, or if lp does not point to the beginning
of a structure within the array. This index value can be used with the
deleteLDPelement () routine to delete structures.

deleteLDPelement () deletes the one specific LDPelement structure
specified by index from the dynamic array of LDPelement structures specified
by dpDA. All the resources associated with the structure are released and all
structures above it are moved down one to fill in the hole.

insertLDPelement () inserts a new LDPelement structure into the dynamic
array specified by dpDA at the location specified by pos. If pos is negative or
greater than the current size of the dynamic array, the new structure is
inserted at the end of the current array. If pos is greater than or equal to 0
and less than the size of the array, then the new structure is inserted at that
location in the array. The information for the new structure is pointed to by lp.
No assumptions are made about the data in the structure. All strings have
new copies made, hence it is the responsibility of the calling routine to
release any data storage associated with lp as new copies of all data are
made during the insertion process.

replaceLDPelement () replaces the information in the LDPelement structure
specified by lpDst with that pointed to by lpSrc. The original information used
by lpDst is released before the replacement. As with insertLDPelement (), all

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 619

data is copied. No pointers to data are reused, hence it is safe to release the
data areas in pSrc once the replaceLDPelement () is complete.

copyLDPcontents () performs the same job as replaceLDPelement () except
that it assumes that lpDst points to an uninitialized LDPelement structure. It
first zeros the structure and then makes copies of the information found in
lpSrc.

freeLDPcontents () releases all allocated strings used by the LDPelement
structure pointed to by lp. Nothing is done with the structure itself.

getLDPpriority () converts the ASCII representation of the priority specified
by name into a priority value. It understands the predefined list of names
E_NONE, E_MANUAL, E_MINOR, E_MAJOR, and E_CRITICAL as well as
the numbers 0-4. It can additional understand the values specified by a
$priorities specification if dpDA is a dynamic array descriptor for an array of
LDPelement structures and priIndex is the index of the $priorities
specification to be used for the translation. A FAILURE (-1) is returned if the
name is not understood, otherwise a value from 0-4 is returned.

The getLDPdsts () and fmtLDPdsts () functions require a DstTranslator
structure to operate. This structure contains to parallel arrays of names and
index values. The structure can be created one destination element at a time
with appendDstTranslator (). name is the ASCII name of the destination, for
example, “log” or “console”. index is the index of the bit position (from 0–31)
(and the index of entry describing this destination in $LOGROOT/Config). If
dtp is NULL, a new DstTranslator structure is allocated and initialized. name

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 620

and index are added to the appropriate arrays within this structure. The
address of the DstTranslator structure is returned. NULL is returned if name
does not point to a non-empty string or if index is not within the range 0–31.
NULL is also returned if the allocation of a new DstTranslator structure fails.
It is the responsibility of the caller to release the DstTranslator structure when
it is no longer needed by calling freeDstTranslator ().

mkDstTranslator () makes a complete DstTranslator structure from the
dynamic array of LDPelement structures specified by dpDA. This is the type
array returned by readDstPri ().

getLDPdsts () converts an ASCII specification of destinations into a bit mask.
The translation information needed to convert ASCII destination names into
bits is supplied by the DstTranslator structure specified by dtp. getLDPdsts (
) returns FALSE if it is unable to convert the spec properly and TRUE if the
translation was successful. The value of the translated mask is returned in
the unsigned int pointed to by dstp. The matching of ASCII destination
names to those supplied by the DstTranslator structure is via the shortest
unique match, hence the destination names need not be completely spelled
out as long as they are unique.

fmtLDPdsts () converts a bit mask into an ASCII representation of the legal
destinations. dst is the bit mask of destinations. dtp is a pointer to a
DstTranslator structure containing the mapping of bits to names. Each
destination is separated by a ’|’ character and any bits not specified by the
DstTranslator structure are printed as a decimal index of the bit (0–31).

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 621

See Also expandLog(3x)
logCat(1x)
log(4x)
logMsg(3x)

logMsg

Name logMsg, vlogMsg, logSysError, logInit — Log messages using the dynamic
destination/priority mechanism

Synopsis #include <varargs.h>
#include "log.h"
#include "logDstPri.h"

int logInit(procName)
char *procName;/* Name of sending process */

char *logMsg(msgNum,EL_FL,...)
EL_FL /* Macro of __FILE__,__LINE__ */
int msgNum;/* Index number of loggin message */

char *vlogMsg(msgNum,El_FL,argPrt)
int msgNum; /* Index number of loggin message */
EL_FL /* Macro of __FILE__,__LINE__ */
va_list argPrt; /* Pointer to arguments for loggin message */

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 622

char *logSysError(EL_FL,fmt,...)
EL_FL /* Macro of __FILE__,__LINE__ */
char *fmt;

Description logInit() is a simpler form of the loginit() function. It assumes that you will be
using the logMsg(), vlogMsg(), or logSysError() routines and hence are not
concerned with the values of the default priority or destination, what are
arguments provided to loginit(). It only requires the name of the process as
you want it to appear in the messages that are logged by the calling process.
It specifies the default priority as E_NONE and the default destination as
MASTER_LOG.

The routines logMsg(), vlogMsg(), and logSysError() provide a means to log
messages with the PRISM logging system. Starting from the msgID
supplied, a message priority and destination mask is looked up. This lookup
information is stored in shared memory by the process logDstPri, which reads
the file msgDst.rules from the directory /usr/spool/log, where the priority and
destination masks are ultimately defined.

logMsg() log the message identified by msgNum to the logging system. The
EL_FL macro identifies the place in the code where the call was generated. It
is a macro expanding to __FILE__,LINE__. Any arguments required by a
specific logging message format are provided after EL_FL.

vlogMsg() does the same job as logMsg(), but it takes any additional
arguments from argPrt, which points to the arguments required by the
specified message.

C C-Library Functions liblog.a Functions

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 623

logSysError() generates an error message based on the current value of the
global errno, which is set by the UnixWare system whenever a system call
fails.

See Also arrays
expandLog
fixLogFile
LComp
log
logDstPri

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 624

Glossary

Numerics

23B+D

23 bearer (communication) and 1 data (signaling) channel on a T1 PRI circuit card.

30B+D

30 bearer (communication) and 1 data (signaling) channel (plus framing channel 0)
on an E1 PRI circuit card.

3270 interface

A link between one or more Intuity CONVERSANT machines and a host mainframe.
In Intuity CONVERSANT system documentation, the 3270 interface specifically
means the link between one or more system machines and an IBM host mainframe.

47B+D

47 bearer (communication) and 1 data (signaling) channel on two T1 PRI circuit
cards.

 Glossary 4ESS®

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 625

4ESS®

A large Lucent central office switch used to route calls through the telephone
network.

A AC

alternating current

ACD

automatic call distributor

AD

application dispatch

AD-API

application dispatch application programming interface

adaptive differential pulse code modulation

A means of encoding analog voice signals into digital signals by adaptively
predicting future encoded voice signals. This adaptive modulation method reduces
the number of bits required to encode voice. See also “pulse code modulation.”

 Glossary adjunct products

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 626

adjunct products

Products (for example, the Adjunct/Switch Application Interface) that the Intuity
system administers via cut-through access to the inherent management capabilities
of the product itself; this is in opposition to the ability of the Intuity CONVERSANT
system to administer the switch directly.

Adjunct/Switch Application Interface

An optional feature package that provides an Integrated Services Digital Network-
based interface between Lucent Technologies PBXs and adjunct processors.

ADPCM

adaptive differential pulse code modulation

ADU

asynchronous data unit

advanced speech recognition

A speech recognition ability that allows the system to understand WholeWord and
FlexWord™ inputs from callers.

affiliate

A business organization that Lucent controls or with which Lucent is in partnership.

 Glossary AGL

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 627

AGL

application generation language

alarm relay unit

A unit used in central office telecommunication arrangements that transmits warning
indicators from telephone communications equipment (such as an Intuity
CONVERSANT system) to audio.

ALERT

System alerter process

alerter

A system process that responds to patterns of events logged by the “logdaemon”
process.

American Standard Code for Information Interchange

A standard code for data representation that represents alphanumeric characters as
binary numbers. The code includes 128 upper- and lowercase letters, numerals, and
special characters. Each alphanumeric and special character has an ASCII code
(binary) equivalent that is 1 byte long.

 Glossary analog

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 628

analog

An analog signal, such as voice or music, that varies in a continuous manner. An
analog signal may be contrasted with a digital signal, which represents only discrete
states.

ANI

automatic number identification

announcement

A message the system plays to the caller to provide information. The caller is not
asked to give a response. Compare to “prompt.”

API

Application programming interface

application

The automated transaction (interactions) among the caller, the voice response
system, and any databases or host computers required for your business. See also
“application script.”

 Glossary application administration

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 629

application administration

The component of the Intuity CONVERSANT system that provides access to the
applications currently available on your system and helps you to manage and
administer them.

application installation

A two-step process in which the Intuity CONVERSANT system invokes the TSM
script assembler for the specific application name and moves files to the appropriate
directories.

application script

The computer program that controls the application (the transaction between the
caller and the system). The Intuity CONVERSANT system provides several methods
for creating application scripts, including Voice@Work, Script Builder, Transaction
Assembler Script (TAS) language, and the Intuity Response Application
Programming Interface (IRAPI).

application verification

A process in which the Intuity CONVERSANT system verifies that all the
components needed by an application are complete.

ASCII

American Standard Code for Information Interchange

 Glossary ASI

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 630

ASI

analog switch integration

ASR

advanced speech recognition

asynchronous communication

A method of data transmission in which bits or characters are sent at irregular
intervals and spaced by start and stop bits rather than by time. Compare to
“synchronous communication.”

asynchronous data unit

An electronic communications device that allows computer systems to communicate
over asynchronous lines more than 50 feet (15 m) in length.

automatic call distributor

That part of a telephone system that recognizes and answers incoming calls and
completes these calls based on a set of instructions contained in a database. The
ACD can send the call to an operator or group of operators as soon as the operator
has completed a previous call or after the system has played a message to the
caller.

 Glossary automatic number identification

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 631

automatic number identification

A method of identifying the calling party by automatically receiving a string of digits
that identifies the calling station of a particular customer.

AYC5B

The IVP6 Tip/Ring (analog) circuit card.

AYC10

The IVC6 Tip/Ring (analog) circuit card.

AYC21

The E1/T1 (digital) circuit card.

AYC30

The NGTR (analog) circuit card.

AYC43

The speech and signal processor (SSP) circuit card.

 Glossary back up

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 632

B back up

The preservation of the information in a file in a different location, so that the data is
not lost in the event of hardware or system failure.

backing up an application

Using a utility that makes an archive copy of a completed application or an interim
copy of an application in progress. The back-up copy can be restored to the system
if the on-line version is damaged, or if you make revisions and want to go back to the
previous version.

barge-in

A capability provided by WholeWord speech recognition and Dial Pulse Recognition
(DPR) that allows callers to speak or enter their responses during the prompt and
have those responses recognized (similar to the Speak with Interrupt capability). See
also “echo cancellation.”

batch file

A file containing one or more lines, each of which is a command executable by the
UNIX shell.

BB

bulletin board

 Glossary binary synchronous communications

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 633

binary synchronous communications

A character-oriented synchronous link protocol.

blind transfer protocol

A protocol in which a call is completed as soon as the extension is dialed, without
having to wait to see if the telephone is busy or if the caller answered.

bps

bits per second

BRDG

call bridging process

bridging

The process of connecting one telephone network connection to another over the
Intuity CONVERSANT system TDM bus. Bridging decreases the processing load on
the system since an active bridge does not require speech processing, database
access, host activity, etc., for the transaction.

BSC

binary synchronous communications

 Glossary bundle

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 634

bundle

In the context of the Enhanced File Transfer package, this term is used to denote a
single file, a group of files (package), or a combination of both.

byte

A unit of storage in the computer. On many systems, a byte is 8 bits (binary digits),
which is the equivalent of one character of text.

C call classification analysis

A process that enables application designers to use information available within the
system to classify the disposition of originated and transferred calls. Intelligent CCA
is provided with the system. Full CCA is an optional feature package.

call data event

A parameter that specifies a list of variables that are appended to a call data record
at the end of each call.

call data handler process

A software process that accumulates generic call statistics and application events.

 Glossary called party number

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 635

called party number

The number dialed by the person making a telephone call. Telephone switching
equipment can use this number to selectively route an incoming call to a particular
department or agent.

caller

The party who calls for a service, gets connected to the Intuity CONVERSANT
system, and interacts with it. As the Intuity CONVERSANT system can also make
outbound calls for service, the caller can also be the person who responds to those
outbound calls.

call flow

See ”transaction.”

call progress tones

Standard telephony sounds that indicate the status of the call. These sounds include
busy, fast busy, ringback, reorder, etc.

card cage

An area within a Intuity CONVERSANT system platform that contains and secures
all of the standard and optional circuit cards used in the system.

 Glossary cartridge tape drive

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 636

cartridge tape drive

A high-capacity data storage/retrieval device that can be used to transfer large
amounts of information onto high-density magnetic cartridge tape based on a
predetermined format. This tape can be removed from the system and stored as a
backup, or used on another system.

CAS

channel associated signalling

caution

An admonishment or advisory statement used in Intuity CONVERSANT system
documentation to alert the user to the possibility of a service interruption or a loss of
data.

CCA

call classification analysis

CDH

call data handler process

CELP

code excited linear prediction

 Glossary central office

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 637

central office

An office or location in which large telecommunication devices such as telephone
switches and network access facilities are maintained. These locations follow strict
installation and operation requirements.

central processing unit

See “processor.”

CGEN

Voice system general message class

channel

See “port.”

channel associated signaling

A type of signaling that can be used on E1 circuit cards. It occurs on channel 16.

CICS

Customer Information Control System

 Glossary circuit card upgrade

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 638

circuit card upgrade

A new circuit card that replaces an existing card in the platform. Usually the
replacement is an updated version of the original circuit card to replace technology
made obsolete by industry trends or a new system release.

cluster controller

A bisynchronous interface that provides a means of handling remote communication
processing.

CMS

Call Management System

CO

central office

code excited linear prediction

A means of encoding analog voice signals into digital signals that provides excellent
quality with use of minimum disk space.

 Glossary command

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 639

command

An instruction or request the user issues to the system software to make the system
perform a particular function. An entire command consists of the command name
and options.

configuration

The arrangement of the software and hardware of a computer system or network.
The Intuity CONVERSANT system configuration includes either a standard or
custom processor, peripheral equipment (for example, printers and modems), and
software applications. Configuration also refers to the way the switch network is set
up; that is, the types of products that are in the network and how those products
communicate.

configuration management

The component of the system that allows you to manage the current configuration of
voice channels, host sessions, and database connections, assign scripts to run on
specific voice channels or host sessions, assign functionality to SSP and E1/T1
circuit cards, and perform various maintenance functions.

connect and disconnect (C and D) tones

DTMF tones that inform the system when the attendant has been connected (C) and
when the caller has been disconnected (D).

 Glossary connected digits

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 640

connected digits

A sequence of digits that the system can process as a group, rather than requiring
the caller to enter the digits one at a time.

Converse Data Return (conv_data)

A Script Builder action that supports the DEFINITY® call vectoring (routing) feature
by enabling the switch to retain control of vector processing in the system
environment. It supports the DEFINITY “converse” vector command to establish a
two-way routing mechanism between the switch and the system to facilitate data
passing and return.

controller circuit card

A circuit card used on a computer system that controls its basic functionality and
makes the system operational. These circuit cards are used to control magnetic
peripherals, video monitors, and basic system communications.

copying an application

A utility in which information from a source application is directed into the destination
application.

 Glossary coresidency

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 641

coresidency

The ability of two products or services to operate and interact with each other on a
single hardware platform. An example of this is the use of an Intuity CONVERSANT
system along with a package from a different vendor on the same system platform.

CPE

customer provided equipment or customer premise equipment

CPN

called party number

CPT

call progress tones

CPU

central processing unit

crash

An interactive utility for examining the operating system core and for determining if
system parameters are being exceeded.

 Glossary CSU

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 642

CSU

channel service unit

custom speech

Unique words or phrases to be used in Intuity CONVERSANT system voice prompts
that Lucent Technologies custom records on a per-customer basis.

custom vocabulary

A specialized package of unique words or phrases created on a per-customer basis
and used by WholeWord or FlexWord speech recognition.

Customer Information Control System

Part of the operating system that manages resources for running applications (for
example, IND$FILE). Note that TSO and CMS provide analogous functionality in
other host environments.

CVS

converse vector step

 Glossary danger

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 643

D danger

An admonishment or advisory statement used in Intuity CONVERSANT system
documentation to alert the user to the possibility of personal injury or death.

data interface process

A software process that communicates with Script Builder applications.

database

A structured set of files, records, or tables.

database field

A field used to extract values from a local database and form the structure upon
which a database is built.

database record

The information in a database for a person, product, event, etc. The database record
is made up of individual fields for each information item.

 Glossary database table

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 644

database table

A structure, made up of columns and rows, that holds information in a database.
Database tables provide a means of storing information that changes too often to
“hard-code,” or store permanently, in the transaction outline.

dB

decibel

DB

database

DBC

database checking process

DBMS

database management system

DC

direct current

DCE

data communications equipment

 Glossary DCP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 645

DCP

digital communications protocol

debug

The process of locating and correcting errors in computer programs; also referred to
as “troubleshooting.”

default

The way a computer performs a task in the absence of other instructions.

default owner

The owner of a channel when no process takes ownership of that channel. The
default owner holds all idle, in-service channels. In terms of the IRAPI, this is
typically the Application Dispatch process.

diagnose

The process of performing diagnostics on a bus or on Tip/Ring, E1/T1, or SSP circuit
cards.

dial ahead

The ability to collect and process touch-tone inputs in sequence, even when they are
received before the prompts.

 Glossary dial pulse recognition

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 646

dial pulse recognition

A method of recognizing caller pulse inputs from a rotary telephone.

dialed number identification service

A service that allows incoming calls to contain information about the telephone
number for which it is destined.

dial through

A capability provided by touch-tone and dial pulse recognition that allows callers to
enter their responses during the prompt and have those responses recognized
(similar to the Speak with Interrupt capability). See also “barge-in” and “echo
cancellation”.

dictionary

A reference book containing an alphabetical list of words, with information given for
each word including meaning, pronunciation, and etymology.

DIMM

dual in-line memory module

DIO

disk input and output process

 Glossary DIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 647

DIP

data interface process

directory

A type of file used to group and organize other files or directories.

display errdata

A command that displays system errors sent to the logger.

DMA

direct memory address

DNIS

dialed number identification service

DPR

dial pulse recognition

DSP

digital signal processor

 Glossary DTE

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 648

DTE

data terminal equipment

DTMF

dual tone multi-frequency

DTR

data terminal ready

dual 3270 links

A feature that provides an additional physical unit (PU) for a cost-effective means of
connecting to two host computers. The customer can connect a system to two
separate FEPs or to a single FEP shared by one or more host computers. Each link
supports a maximum of 32 LUs.

dual tone multi-frequency

A touch-tone sound that is an audio signal including two different frequencies. DTMF
feedback is the process of the “switch” providing this information to the system.
DTMF muting is the process of ignoring these tones (which might be simulated by
human speech) when they are not needed for the application.

 Glossary dump space

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 649

dump space

An area of the disk that is fixed in size and should equal the amount of RAM on the
system. The operating system “dumps” an image of core memory when the system
crashes. The dump can be fetched after rebooting to help in analyzing the cause of
the crash.

E E&M

Ear and Mouth

E1 / T1

Digital telephony interfaces, commonly called trunks. E1 is an international standard
at 2.048 Mbps. T1 is a North American standard at 1.544 Mbps.

Ear and Mouth

A common T1 trunking protocol for connection between two “switches.”

EBCDIC

Extended Binary Coded Decimal Interexchange Code

 Glossary echo cancellation

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 650

echo cancellation

The process of making the channel quiet enough so that the system can hear and
recognize WholeWord and dial pulse inputs during the prompt. See also “barge-in.”

ECS

Enterprise Communications Server

editor system

A system that allows speech phrases to be displayed and edited by a user. See
“Graphical Speech Editor.”

EFT

Enhanced File Transfer

EIA

Electronic Industries Association

EISA

Extended Industry Standard Architecture

EMI

electromagnetic interference

 Glossary enhanced basic speech

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 651

enhanced basic speech

Pre-recorded speech available from Lucent Technologies in several languages.
Sometimes called “standard speech.”

Enhanced File Transfer

A feature that allows the transferring of files automatically between the Intuity
CONVERSANT system and a synchronous host processor on a designated logical
unit.

Enhanced Serial Data Interface

A software- and hardware-controlled method used to store data on magnetic
peripherals.

Enterprise Communications Server

The telephony equipment that connects your business to the telephone network.
Sometimes called a “switch.”

error message

A message on the screen indicating that something is wrong with a possible
suggestion of how to correct it.

 Glossary ESD

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 652

ESD

electrostatic discharge

ESDI

Enhanced Serial Data Interface

ESS

electronic switching system

EST

Enhanced Software Technologies, Inc.

ET

error tracker

Ethernet

A name for a local area network that uses 10BASE5 or 10BASE2 coaxial cable and
InterLAN signaling techniques.

event

The notification given to an application when some condition occurs that is generally
not encountered in normal operation.

 Glossary EXTA

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 653

EXTA

external alarms feature message class

external actions

Specific predefined system tasks that Script Builder can call or invoke to interact with
other products or services. When an external action is invoked, the systems displays
a form that provides choices in each field for the application developer to select.
Examples are Call_Bridge, Make_Call, SP_Allocate, SR_Prompt, etc. In
Voice@Work, external actions are treated as “external functions.”

external functions

Specific predefined (or customer-created) system tasks that Voice@Work or Script
Builder can call or invoke to interact with other products or services. The function
allows the application developer to enter the argument(s) for the function to act on.
Examples are concat, getarg, length, substring, etc. See also “external actions.”

F FAX Actions

An optional feature package that allows the system to send fax messages.

 Glossary FCC

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 654

FCC

Federal Communications Commission

FDD

floppy disk drive

feature

A function or capability of a product or an application within the Intuity
CONVERSANT system.

feature package

An optional package that may contain both hardware and software resources to
provide additional functionality to a standard system.

feature_tst script package

A standard Intuity CONVERSANT system software program that allows a user to
perform self-tests of critical hardware and software functionality.

FEP

front end processor

 Glossary FFE

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 655

FFE

Form Filler Plus feature message class

field

See “database field.”

FIFO

first-in-first-out processing order

file

A collection of data treated as a basic unit of storage.

file transfer

An option that allows you to transfer files interactively or directly to and from UNIX
using the file transfer system (FTS).

filename

Alphabetic characters used to identify a particular file.

FlexWord™ speech recognition

A type of speech recognition based on subword technology that recognizes
phonemes or parts of words in a specific language. See also “subword technology.”

 Glossary foos

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 656

foos

facility out-of-service state

Form Filler Plus

An optional feature package that provides the capability for application scripts to
record a caller’s responses to prompts for later transcription and review.

FTS

file transfer process message class

Full CCA

A feature package that augments the types of call dispositions that Intelligent CCA
can provide.

function key

A key, labeled F1 through F8, on your keyboard to which the Intuity CONVERSANT
system software gives special properties for manipulating the user interface.

G GEN

PRISM logger and alerter general message class

 Glossary grammar

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 657

grammar

The inputs that a recognizer can match (identify) from a caller.

Graphical Speech Editor

A window-driven, X Windows/Motif based, graphical user interface (GUI) that can be
accessed to perform different functions associated with the creation and editing of
speech files for applications. The editing is done on the Intuity CONVERSANT
system.

GSE

Graphical Speech Editor

GUI

graphical user interface

H hard disk drive

A high-capacity data storage/retrieval device that is located inside a computer
platform. A hard disk drive stores data on nonremovable high-density magnetic
media based on a predetermined format for retrieval by the system at a later date.

 Glossary hardware

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 658

hardware

The physical components of a computer system. The central processing unit, disks,
tape, and floppy drives, etc., are all hardware.

Hardware Resource Allocator

A software program that resolves or blocks the allocation of CPU and memory
resources for controlling and optional circuit cards.

hardware upgrade

Replacement of one or more fundamental platform hardware components (for
example, the CPU or hard disk drive), while the existing platform and other existing
optional circuit cards remain.

HDD

hard disk drive

High Level Language Applications Programming Interface

An application programming interface that allows a user to write custom applications
that can communicate with a host computer via an API.

HLLAPI

High Level Language Applications Programming Interface

 Glossary HOST

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 659

HOST

host interface process message class

host computer

A computer linked to a network to provide a range of services, such as database
access and computation. The host computer operates in a time-sharing manner with
other computers linked to it via the network.

hwoos

hardware out-of-service state

Hz

Hertz

I IBM

International Business Machines

iCk or ICK

The system integrity checking process.

 Glossary ID

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 660

ID

identification

IDE

integrated disk electronics

idle channel

A channel that either has no owner or is owned by its default owner and is onhook.

IE

information element

IND$FILE

The standard SNA file transfer utility that runs as an application under CICS, TSO,
and CMS. IND$FILE is independent of link-level protocols such as BISYNC and
SDLC.

independent software vendor

A company that has an agreement with Lucent Technologies to develop software to
work with the Intuity CONVERSANT system to provide additional features required
by customers.

 Glossary indexed table

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 661

indexed table

A table that, unlike a nonindexed table, can be searched via a field name that has
been indexed.

industry standard architecture

A PC bus standard that allows processors and other circuit cards to communicate
with each other.

INIT

voice system initialization message class

initialize

To start up the system for the first time.

inserv

in-service state

Integrated Services Digital Network

A network that provides end-to-end digital connectivity to support a wide range of
voice and data services.

 Glossary Integrated Voice Processing (IVP) circuit card

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 662

Integrated Voice Processing (IVP) circuit card

The IVP6 circuit card that provides Tip/Ring connections. The NGTR (AYC30) card
also provides the same functions.

intelligent CCA

Monitoring the line after dialing is complete to determine whether a busy, reorder
(fast busy), or other failure has been encountered. It also recognizes when the
extension is answered or if the extension is not answered after a specified number of
rings. The monitoring capabilities are dependent on the network interface circuit card
and protocol used

interface

The access point of a system. With respect to the Intuity CONVERSANT system, the
interface is designed to provide you with easy access to the software capabilities.

interrupt

The termination of voice and/or telephony functions when some condition occurs.

Intuity Response Application Programming Interface

A library of commands that provide a standard development interface for voice-
telephony applications.

 Glossary IPC

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 663

IPC

interprocess communication

IPC

intelligent ports card (IPC-900)

IPCI

integrated personal computer interface

IRAPI

Intuity Response Application Programming Interface

IRQ

interrupt request

ISA

industry standard architecture

ISDN

Integrated Services Digital Network

 Glossary ISV

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 664

ISV

independent software vendor

ITAC

International Technical Assistance Center

IVC6 circuit card (AYC10)

A Tip/Ring (analog) circuit card with six channels.

IVP6 circuit card (AYC5B)

A Tip/Ring (analog) card with six channels.

K Kbps

kilobytes per second

Kbyte

kilobyte

 Glossary keyboard mapping

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 665

keyboard mapping

In emulation mode, this feature enables the keyboard to send 3270 keyboard codes
to the host according to a configuration table set up during installation.

keyword spotting

A capability provided by WholeWord speech recognition that allows the system to
recognize a single word in the middle of an entire phrase spoken by a caller in
response to a prompt.

L LAN

local area network

LDB

local database

LED

light-emitting diode

library states

The state information about channel activities maintained by the IRAPI.

 Glossary LIFO

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 666

LIFO

last-in-first-out processing order

line side E1

A digital method of interfacing an Intuity CONVERSANT system to a PBX or “switch”
using E1-related hardware and software.

line side T1

A digital method of interfacing an Intuity CONVERSANT system to a PBX or “switch”
using T1-related hardware and software.

listfile

An ASCII catalog that lists the contents of one or more talkfiles. Each application
script is typically associated with a separate listfile. The listfile maps speech phrase
strings used by application scripts into speech phrase numbers.

local area network

A data communications network in a limited geographical area. The LAN provides
communications between computers and peripherals.

local database

A database residing on the Intuity CONVERSANT system.

 Glossary LOG

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 667

LOG

Intuity CONVERSANT system logger process message class

logical unit

A type of SNA Network Addressable Unit.

logdaemon

A UNIX system information and error logging process.

logger

See “logdaemon.”

logging on/off

Entering or exiting the Intuity CONVERSANT system software.

LSE1

line side E1

LST1

line side T1

 Glossary LU

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 668

LU

logical unit

M magnetic peripherals

Data storage devices that use magnetic media to store information. Such devices
include hard disk drives, floppy disk drives, and cartridge tape drives.

main screen

The Intuity CONVERSANT system screen from which you are able to enter either
the System Administration or Voice System Administration menu.

maintenance process

A software process that runs temporary diagnostics and maintains the state of circuit
cards and channels.

manoos

manually out-of-service state

MAP/100P

multi application platform 100P

 Glossary MAP/100C

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 669

MAP/100C

multi application platform 100C

MAP/40P

multi application platform 40P

MAP/5P

multi application platform 5P

masked event

An event that an application can ignore (that is, the application can request not to be
informed of the event).

master

A circuit card that provides clock information to the TDM bus.

Mbps

megabits per second

MByte

megabyte

 Glossary megabyte

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 670

megabyte

A unit of memory equal to 1,048,576 bytes (1024 x 1024). It is often rounded to one
million.

menu

Options presented to a user on a computer screen or with voice prompts.

MF

multifrequency

MHz

megahertz

Microsoft

A manufacturer of software products, primarily for IBM-compatible computers.

mirroring

A method of data backup that allows all of the data transactions to the primary hard
disk drive to be copied and maintained on a second identical drive in near real time.
If the primary disk drive crashes or becomes disabled, all of the data stored on it (up
to 1.2 billion bytes of information) is accessible on the second mirrored disk drive.

 Glossary ms

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 671

ms

millisecond

msec

millisecond

MS-DOS

A personal computer disk operating system developed by the Microsoft Corporation.

MTC

maintenance process

multifrequency

Dual tone digit signalling (similar to DTMF), used for trunk addressing between
network switches or by network operators.

multithreaded application

A single process/application that controls several channels. Each thread of the
application is managed explicitly. Typically this means state information for each
thread is maintained and the state of the application on each channel is tracked.

 Glossary NCP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 672

N NCP

Network Control Program

NEBS

Network Equipment Building Standards

NEMA

National Electrical Manufacturers Association

netoos

network out-of-service state

NetView

An optional feature package that transmits high-priority (major or critical) messages
to the host as operator-generated alerts (OGAs) over the 3270 host link. The
NetView Alarm feature package does not require a dedicated LU.

next generation Tip/Ring (AYC30) circuit card

An analog circuit card with six channels.

 Glossary NFAS

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 673

NFAS

non-facility associated signalling

NFS

network file sharing

NGTR

next generation Tip/Ring (AYC30) circuit card

NM-API

Network Management - Application Programming Interface

NMVT

network management vector transport

nonex

nonexistent state

nonindexed table

A table that can be searched only in a sequential manner and not via a field name.

 Glossary nonmasked event

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 674

nonmasked event

An event that must be sent to the application. Generally, an event is nonmaskable if
the application would likely encounter state transition errors by trying to it.

NRZ

non return to zero

NRZI

non return to zero inverted

null value

An entry containing no value. A field containing a null value is normally displayed as
blank and is different from a field containing a value of zero.

O obsolete hardware

Hardware that is no longer supported on the Intuity CONVERSANT system.

OEM

original equipment manufacturer

 Glossary OGA

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 675

OGA

operator-generated alert

on-line help

Messages or information that appear on the user’s screen when a “function key” (F1
through F8) is pressed.

operator-generated alert

A system-monitoring message that is transmitted from the Intuity CONVERSANT
system or other computer system to an IBM host computer and is classified as
critical or major.

option

An argument used in a command line to modify program output by modifying the
execution of a command. When you do not specify any options, the command
executes according to its default options.

ORACLE

A company that produces relational database management software. It is also used
as a generic term that identifies a database residing on a local or remote system that
is created and maintained using an ORACLE RDBMS product.

 Glossary P&C

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 676

P P&C

Prompt and Collect Script Builder action step

PBX

private branch exchange

PC

personal computer

PCB

printed circuit board

PCI

peripheral component interconnect

PCM

pulse code modulation

PEC

price element code

 Glossary peripheral (device)

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 677

peripheral (device)

Equipment such as printers or terminals that is in addition to the basic processor.

peripheral component interconnect

A newer, higher speed PC bus that is gradually displacing ISA for many components.

permanent process

A process that starts and initializes itself before it is needed by a caller.

phoneme

A single basic sound of a particular spoken language. For example, the English
language contains 40 phonemes that represent all basic sounds used with the
language. The English word “one” can be represented with three phonemes, “w” -
“uh” - “n.” Phonemes vary between
languages because of guttural and nasal inflections and syllable constructs.

phrase filtering (screening)

The rejection of unrecognized speech. The WholeWord and FlexWord speech
recognition packages can be programmed to reprompt the caller if the Intuity
CONVERSANT system does not recognize a spoken response.

 Glossary phrase tag

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 678

phrase tag

A string of up to 50 characters that identifies the contents of a speech phrase used
by an application script.

platform migration

See “platform upgrade.”

platform upgrade

The process of replacing the existing platform with a new platform.

pluggable

A term usually used with speech technologies, in particular standard speech, to
indicate that a basic algorithmic technique has been implemented to accept one or
more sets of parameters that tailors the algorithm to perform in one or more
languages.

poll

A message sent from a central controller to an individual station on a multipoint
network inviting that station to send if it has any traffic.

 Glossary polling

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 679

polling

A network arrangement whereby a central computer asks each remote location
whether it wants to send information. This arrangement enables each user or remote
data terminal to transmit and receive information on shared facilities.

port

A connection or link between two devices that allows information to travel to a
desired location. See “telephone network connection.”

PRI

Primary Rate Interface

Primary Rate Interface

An ISDN term for connections over E1 or T1 facilities that are usually treated as
trunks.

private branch exchange

A private switching system, either manual or automatic, usually serving an
organization, such as a business or government agency, and usually located on the
customer’s premises.

 Glossary processor

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 680

processor

In Intuity CONVERSANT system documentation, the computer on which UnixWare
and Intuity CONVERSANT system software runs. In general, the part of the
computer system that processes the data. Also known as the “central processing
unit.”

prompt

A message played to a caller that gives the caller a choice of selections in a menu
and asks for a response. Compare to “announcement.”

prompt and collect (P and C)

A message played to a caller that gives the caller a choice of selections in a menu
and asks for a response. The responses is collected and the script progresses based
on the caller’s response.

pseudo driver

A driver that does not control any hardware.

PS&BM

power supply and battery module

 Glossary PSTN

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 681

PSTN

public switch telephone network

pulse code modulation

A digital modulation method of encoding voice signals into digital signals. See also
“adaptive differential pulse code modulation.”

R RAID

redundant array of independent disks

RAID array

An assembly of disk drives configured to provide some level of RAID functionality.

RAM

random access memory

RDMBS

ORACLE relational database management system

 Glossary RECOG

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 682

RECOG

speech recognition feature message class

recognition type

The type of input the recognizer can understand. Available types include touch-tone,
dial pulse, and Advanced Speech Recognition (ASR), which includes WholeWord
and FlexWord speech recognition.

recognizer

The part of the system that compares caller input to a grammar in order to correctly
match (identify) the caller input.

record

See “database record.”

recovery

The process of using copies of the Intuity CONVERSANT system software to
reconstruct files that have been lost or damaged. See also “restore.”

remote database

Information stored on a system other than the Intuity CONVERSANT system that
can be accessed by the Intuity CONVERSANT system.

 Glossary remote maintenance circuit card

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 683

remote maintenance circuit card

An Intuity CONVERSANT system circuit card, available with a built-in modem, that
allows remote personnel (for example, field support) to access all Intuity
CONVERSANT system machines. This card is standard equipment on all new
MAP/100, MAP/40, and MAP/5P purchases.

REN

ringer equivalence number

reports administration

The component of Intuity CONVERSANT system that provides access to system
reports, including call classification, call data detail, call data summary, message log,
and traffic reports.

restore

The process of recovering lost or damaged files by retrieving them from available
back-up tapes or from another disk device. See also “recovery.”

restore application

A utility that replaces a damaged application or restores an older version of an
application.

 Glossary reuse

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 684

reuse

The concept of using a component from a source system in a target system after a
software upgrade or platform migration.

RFS

remote file sharing

RM

resource manager

RMB

remote maintenance circuit card

roll back

To cancel changes to a database since the point at which changes were last
committed.

rollback segment

A portion of the database that records actions that should be undone under certain
circumstances. Rollback segments are used to provide transaction rollback, read
consistency, and recovery.

 Glossary RTS

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 685

RTS

request to send

S SBC

sub-band coding

screen pop

A method of delivering a screen of information to a telephone operator at the same
time a telephone call is delivered. This is accomplished by a complex chain of tasks
that include identifying the calling party number, using that information to access a
local or remote ORACLE database, and pulling a “form” full of information from the
database using an ORACLE database utility package.

script

The set of instructions for the Intuity CONVERSANT system to follow during a
transaction.

 Glossary Script Builder

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 686

Script Builder

An optional software package that provides a menu-oriented interface designed to
assist in the development of custom voice response applications on the Intuity
CONVERSANT system (see also “Voice@Work”).

SCSI

small computer system interface

SDLC

synchronous data link control

SDN

software defined network

shared database table

A database table that is used in more than one application.

shared speech

Speech that is a part of more than one application.

 Glossary shared speech pools

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 687

shared speech pools

A parameter that allows the user of a voice application to share speech components
with other applications.

SID

station identification

signal processor circuit card (AYC2, AYC2B, AYC2C, or AYC9d)

A speech processing circuit card that is an older, lower-capacity version of the
speech and signal processor (SSP) circuit card (AYC43).

SIMMs

single inline memory modules

single inline memory modules

A method of containing random access memory (RAM) chips on narrow circuit card
strips that attach directly to sockets on the CPU circuit card. Multiple SIMMs are
sometimes installed on a single CPU circuit card.

single-threaded application

An application that runs on a single voice channel.

 Glossary slave

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 688

slave

A circuit card that depends on the TDM bus for clock information.

SLIP

serial line interface protocol

small computer system interface

A disk drive control technology in which a single SCSI adapter circuit card plugged
into a PC slot is capable of controlling as many as seven different hard disks, optical
disks, tape drives, etc.

SNA

systems network architecture

SNMP

simple network management protocol

software

The set or sets of programs that instruct the computer hardware to perform a task or
series of tasks — for example, UnixWare software and the Intuity CONVERSANT
system software.

 Glossary software upgrade

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 689

software upgrade

The installation of a new version of software in which the existing platform and circuit
cards are retained.

source system

The system from which you are upgrading (that is, your system as it exists before
you upgrade).

speech and signal processor circuit card (AYC43)

The high-performance signal processing circuit card introduced in V6.0 capable of
simultaneous support for various speech technologies.

speech energy

The amount of energy in an audio signal. Literally translated, it is the output level of
the sound in every phonetic utterance.

speech envelope

The linear representation of voltage on a line. It reflects the sound wave amplitude at
different intervals of time. This envelope can be plotted on a graph to represent the
oscillation of an audio signal between the positive and negative extremes.

 Glossary speech file

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 690

speech file

A file containing an encoded speech phrase.

speech filesystem

A collection of several talkfiles. The filesystem is organized into 16-Kbyte blocks for
efficient management and retrieval of talkfiles.

speech modeling

The process of creating WholeWord speech recognition algorithms by collecting
thousands of different speech samples of a single word and comparing them all to
obtain a statistical average of the word. This average is then used by a WholeWord
speech recognition program to recognize a single spoken word.

speech space

An area that contains all digitized speech used for playback in the applications
loaded on the system.

speech phrase

A continuous speech segment encoded into a digital string.

speech recognition

The ability of the system to understand input from callers.

 Glossary SPIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 691

SPIP

signal processor interface process

SPPLIB

speech processing library

SQL

structured query language

SR

speech recognition

SSP

speech and signal processor circuit card (AYC43)

standard speech

The speech package available in several languages containing simple words and
phrases produced by Lucent Technologies for use with the Intuity CONVERSANT
system. This package includes digits, numbers, days of the week, and months, each
spoken with initial, medial, and falling inflection. The speech is in digitized files stored
on the hard disk to be used in voice prompts and messages to the caller. This feature
is also called enhanced basic speech.

 Glossary standard vocabulary

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 692

standard vocabulary

A standard package of simple word speech models provided by Lucent Technologies
and used for WholeWord speech recognition. These phrases include the digits “zero”
through “nine,” “yes,” “no,” and “oh,” or the equivalent words in a specific local
language.

string

A contiguous sequence of characters treated as a unit. Strings are normally bounded
by white spaces, tabs, or a character designated as a separator. A string value is a
specified group of characters symbolized by a variable.

structured query language

A standard data programming language used with data storage and data query
applications.

subword technology

A method of speech recognition used in FlexWord recognition that recognizes
phonemes or parts of words. Compare to “WholeWord speech recognition.”

switch

A software and hardware device that controls and directs voice and data traffic. A
customer-based switch is known as a “private branch exchange.”

 Glossary switch hook

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 693

switch hook

The device at the top of most telephones that is depressed when the handset is
resting in the cradle (in other words, is on hook). The device is raised when the
handset is picked up (in other words, when the telephone is off hook).

switch hook flash

A signaling technique in which the signal is originated by momentarily depressing the
“switch hook.”

switch interface administration

The component of the Intuity CONVERSANT system that enables you to define the
interaction between the Intuity CONVERSANT system and switches by allowing you
to establish and modify switch interface parameters and protocol options for both
analog and digital interfaces.

switch network

Two or more interconnected telephone switching systems.

synchronous communication

A method of data transmission in which bits or characters are sent at regular time
intervals, rather than being spaced by start and stop bits. Compare to “asynchronous
communication.”

 Glossary SYS

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 694

SYS

UNIX system calls message class

sysgen

system generation

System 75

An advanced digital switch supporting up to 800 lines that provides voice and data
communications for its users.

System 85

An advanced digital switch supporting up to 3000 lines that provides voice and data
communications for its users.

system administrator

The person assigned the responsibility of monitoring all Intuity CONVERSANT
system software processing, performing daily system operations and preventive
maintenance, and troubleshooting errors as required.

system architecture

The manner in which the Intuity CONVERSANT system software is structured.

 Glossary system message

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 695

system message

An event or alarm generated by either the Intuity CONVERSANT system or end-user
process.

system monitor

A component of the Intuity CONVERSANT system that tests to verify that each
incoming telephone line and its associated Tip/Ring or T1 circuit card is functional.
Through the “System Monitor” component, you are able to see displays of the Voice
Channel and Host Session Monitors.

T T1

A digital transmission link with a capacity of 1.544 Mbps.

table

See “database table.”

tag image file format

A format for storing and exchanging digital image data associated with fax modem
data transfers and other applications.

 Glossary talkfile

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 696

talkfile

An ASCII file that contains the speech phrase tags and phrase tag numbers for all
the phrases of a specific application. The speech phrases are organized and stored
in groups. Each talkfile can contain up to 65,535 phrases, and the speech filesystem
can contain multiple talkfiles.

talkoff

The process of a caller interrupting a prompt, so the prompt message stops playing.

target system

The system to which you are upgrading (that is, your system as you expect it to exist
after you upgrade).

TAS

transaction assembler script

TCC

Technology Control Center

TCP/IP

transmission control protocol/internet protocol

 Glossary TDM

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 697

TDM

time division multiplexing

TE

terminal emulator

telephone network connection

The point at which a telephone network connection terminates on an Intuity
CONVERSANT
system. Supported telephone connections are Tip/Ring, T1, and E1.

terminal emulator

Software that allows a PC or UNIX process to look like a specific type of terminal. In
particular, it allows the Intuity CONVERSANT system to temporarily transform itself
into a “look alike” of an IBM 3270 terminal. In addition to providing full 3270
functionality, the terminal emulator enables you to transfer files to and from UNIX.

text-to-speech

An optional feature that allows an application to play US English speech directly from
ASCII text by converting that text to synthesized speech. The text can be used for
prompts or for text retrieved from a database or host, and can be spoken in an
application with prerecorded speech. text-to-speech application development is
supported through Voice@Work and Script Builder.

 Glossary ThickNet

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 698

ThickNet

A 10-mm (10BASE5) coaxial cable used to provide interLAN communications.

ThinNet

A 5-mm (10BASE2) coaxial cable used to provide interLAN communications.

TIFF

tag image file format

time-division multiplex

A method of serving a number of simultaneous channels over a common
transmission path by assigning the transmission path sequentially to the channels,
with each assignment being for a discrete time interval.

Tip/Ring

Analog telecommunications using four-wire media.

token ring

A ring type of local area network that allows any station in the network to
communicate with any other station.

 Glossary trace

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 699

trace

A command that can be used to monitor the execution of a script.

traffic

The flow of information or messages through a communications network for voice,
data, or audio services.

transaction

The interactions (exchanges) between the caller and the voice response system. A
transaction can involve one or more telephone network connections and voice
responses from the Intuity CONVERSANT system. It can also involve one or more of
the system optional features, such as speech recognition, 3270 host interface, FAX
Actions, etc.

transaction assembler script

The computer program code that controls the application operating on the voice
response system. The code can be produced from Voice@Work, Script Builder, or
by writing directly in TAS code.

transaction state machine process

A multi-channel IRAPI application that runs applications controlled by TAS script
code.

 Glossary transient process

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 700

transient process

A process that is created dynamically only when needed.

TRIP

Tip/Ring interface process

troubleshooting

The process of locating and correcting errors in computer programs. This process is
also referred to as debugging.

TSO

Technical Services Organization

TSO

time share operation

TSM

transaction state machine process

TTS

text-to-speech

 Glossary TWIP

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 701

TWIP

T1 interface process

U UK

United Kingdom

US

United States of America

UNIX Operating System

A multiuser, multitasking computer operating system originally developed by Lucent
Technologies.

UNIX shell

The command language that provides a user interface to the UNIX operating
system.

upgrade scenario

The particular combination of current hardware, software, application and target
hardware, software, applications, etc.

 Glossary usability

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 702

usability

A measurement of how easy an application is for callers to use. The measurement is
made by making observations and by asking questions. An application should have
high usability to be successful.

USOC

universal service ordering code

UVL

unified voice library

V VDC

video display controller

vi editor

A screen editor used to create and change electronic files.

 Glossary virtual channel

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 703

virtual channel

A channel that is not associated with an interface to the telephone network (Tip/Ring,
T1, LSE1/LST1, or PRI). Virtual channels are intended to run “data-only” applications
which do not interact with callers but may interact with DIPs. Voice or network
functions (for example, coding or playing speech, call answer, origination, or
transfer) will not work on a virtual channel. Virtual channel applications can be
initiated only by a “virtual seizure” request to TSM from a DIP.

vocabulary

A collection of words that the Intuity CONVERSANT system is able to recognize
using either WholeWord or FlexWord speech recognition.

vocabulary activation

The set of active vocabularies that define the words and wordlists known to the
FlexWord recognizer.

vocabulary loading

The process of copying the vocabulary from the system where it was developed and
adding it to the target system.

 Glossary Voice@Work

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 704

Voice@Work

An optional software package that provides a graphical interface to assist in
development of voice response applications on the Intuity CONVERSANT system
(see also “Script Builder”).

voice channel

A channel that is associated with an interface to the telephone network (Tip/Ring, T1,
E1, LSE1/LST1, or PRI). Any Intuity CONVERSANT system application can run on a
voice channel. Voice channel applications can be initiated by being assigned to
particular voice channels or dialed numbers to handle incoming calls or by a “soft
seizure” request to TSM from a DIP or the soft_szr command.

voice processing co-marketer

A company licensed to purchase voice processing equipment, such as the Intuity
CONVERSANT system, to market and sell based on their own marketing strategies.

voice response output process

A software process that transfers digitized speech between system hardware (for
example, Tip/Ring and SSP circuit cards) and data storage devices (for example,
hard disk, etc.)

 Glossary voice response unit

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 705

voice response unit

A computer connected to a telephone network that can play messages to callers,
recognize caller inputs, access and update a databases, and transfer and monitor
calls.

voice system administration

The means by which you are able to administer both voice- and nonvoice-related
aspects of the system.

VPC

voice processing co-marketer

VROP

voice response output process

VRU

voice response unit

 Glossary warning

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 706

W warning

An admonishment or advisory statement used in Intuity CONVERSANT system
documentation to alert the user to the possibility of equipment damage.

WholeWord speech recognition

An optional feature, available in several languages, based on whole-word
technology that can recognize the numbers one through zero, “yes”, and “no” (the
key words). This feature is reliable, regardless of the individual speaker. This feature
can identify the key words when spoken in phrases with other words. A string of key
words, called connected digits, can be recognized. During the prompt
announcement, the caller can speak or use touch tones (or dial pulses, if available).
See also “whole-word technology.”

whole-word technology

The ability to recognize an entire word, rather than just the phoneme or a part of a
word. Compare to “subword technology.”

wink signal

An interruption of current to a busy lamp indicating that there is a line on hold.

word

A unique utterance understood by the recognizer.

 Glossary wordlist

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 707

wordlist

A set of words available for FlexWord recognition by an application during a Prompt
& Collect action step.

word spotting

The ability to search through extraneous speech during a recognition.

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 708

Index

Symbols
.D file 24

.h file 12

.pl file 13

.T file 11

.t file 11

A
Acrobat Reader

adjusting the window size xxxix
hiding and displaying bookmarks xxxix
navigating xxxix
printing from xl
searching xxxix
setting the default magnification xxxviii

AD, see Application Dispatch

adaptive differential pulse code modulation
(ADPCM)
coding designations 83

add command 303

addhdr command 303

addmsg command 384

ADPCM, see adaptive differential pulse code
modulation

and instruction 59, 409

Application Dispatch (AD)
API 218, 344
application control 216
tables 218–222

applications
components

DIP 8
script 8

debugging 349
design 2
development tools 4

 Index B

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 709

applications, (continued)
examples

chantest 312
DIP 397
external function 395
script builder action step 387
script language 391

IRAPI 191
organization 212

atoi instruction 59, 410

audit command 303

B
background instruction 45, 411

bbs command 146

BSS space 213

buildfs command 303

bulletin board 145

C
Call Classification Analysis (CCA)

IRAPI functions 280
irCall functions 290

call data handler (CDH)
collecting data 24
irCallData function 211
TSM information 18

call profile
channel-specific parameters 272
global parameters 275
information elements 275

calling party number (CPN)
setattr instruction 108

case instruction 68, 413

CCA, see Call Classification Analysis

CDH, see call data handler

channels
IRAPI management 248
IRAPI ownership 196
management

application ownership 254
default ownership 249
execing applications 250
library states 260

chantest
sample application 312
see also feature_tst

chantype instruction 114, 414

 Index D

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 710

C-library function summary 566

code excited linear prediction (CELP)
CELP16 83

coding
speech 85
style 14

comments
inline 16

compiling
DIPs 173
error messages 376

copy command 303

CPN, see calling party number

D
data

components 152
storage 22

data gathering instructions 48

data interface processes (DIP)
bulletin board 145
called by IRAPI 210
compiling 173

data interface processes (DIP), (continued)
dbase instruction 166
definition 8
dipname instruction 169
dipnum instruction 170
dipterm instruction 167
error messages 376
error reporting 171
hardcoded 178
initializing 154
interrupt 165
message queues 141
naming convention 11
sample 397
sending/receiving messages 161
talking to TSM scripts 164
tracing 171
troubleshooting 176
types 143
VSstartup function 154
writing 147

data manipulation instructions 59

db_init function 569

db_pr function 172, 570

db_put function 173, 572

dbase instruction 56, 166, 416

 Index E

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 711

debug command 350

decr instruction 59, 418

define statements 14

defService command 223

dial pulse recognition (DPR)
echo cancellation 311
IRAPI caller input 304
IRAPI events 310
IRAPI functions 305
IRAPI grammar header files 308
IRAPI parameters 307
TAS script instructions 89

dialed number identification service (DNIS)
used by IRAPI 195
used with Application Dispatch (AD) 221

DIP, see data interface processes

dipname instruction 169, 419

dipnum instruction 170, 420

dipterm instruction 57, 167, 421

div instruction 60, 425

DPR, see dial pulse recognition

dtitos instruction 60, 425

DTMF, see dual tone multifrequency

dtstoi instruction 61, 428

dual tone multifrequency (DTMF)
muting 292
transmitting digits 292

DynaDIPs 143, 155

E
echo cancellation

IRAPI 311, 319
irStartEcho function 319

electronic documentation, printing xl

erase command 303

error messages
compiling 376
content 373
mnemonic definition 375
removing 384
testing 380

et_send function 573

event instruction 69, 430
types 70–72

event memory 22

 Index F

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 712

examples
chantest application 312
DIP 397
external function 395
script builder action steps 387
TAS script 391

exec instruction 72, 437

execu instruction 73, 441

expandLog function 608

external functions
application example 395

F
feature related instructions

FlexWord 97
PRI 106
TTS 101
WholeWord 92

files
naming conventions 10

FlexWord speech recognition
script instructions 97
TAS script instructions 89

flow control instructions 68

function, external sample 395

G
getdig instruction 92, 97

getinput instruction 90, 452

getIRAPIparam instruction 454

goto instruction 73, 456

H
hardcoded DIPs 159, 178

hbridge instruction 115, 457

header files
transaction control 119

hundsec instruction 116, 458

 Index I

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 713

I
ibrl instruction 74, 459

incr instruction 61, 460

initializing DIPs 154–160

inline comments 16

INTUITY Response Application Programming
Interface, see IRAPI

IRAPI
Application Dispatch (AD) 216
applications

control 191
execution 233
framework 225
initialization 228
management 347
structure 191
termination 244

call data handler (CDH) 211
call profile 271
caller input 195
channel ownership 196
dial pulse input 304
echo cancellation 311

irStartEcho function 319

IRAPI, (continued)
errors 341
library 189
manual pages 190
OA&M interface 211
organization 197, 200
processes 196

initializing 226
terminating 247

recognition parameters
DPR 308
FlexWord speech recognition 308

resources
allocating 193
channels 248
events 262
interrupts 262
platform 337
Resource Manager (RM) 204
TDM timeslots 196
timeslots 291
tuning parameters 354

run-time services 224, 247
speech file access 294
system tunable parameters 354

global 367
hard disk 359
Resource Manager (RM) 362

 Index J

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 714

IRAPI, (continued)
telephony support 195

ASAI 281
CCA 290
irCall 282
outcalling 283
PRI 281
service states 281

Text-to-Speech (TTS) 335
voice

capabilities 207
input/output 194
operations 276

WholeWord speech recognition 308
itoa instruction 61, 461

J
jmp instruction 74, 461

L
label instruction 75, 462

libalerter.a functions 568, 598

liblog.a functions 568, 608

libraries
libalerter.a 568
liblog.a 568
libspp.so 568, 569

libspp.so functions 568, 569

list command 303

list file 13

listenall instruction 116, 463

load instruction 61, 465

logCat command 351

logDstPri function 614

logMsg function 621

M
mesgrcv function 162, 576

mesgsnd function 161, 583

mkheader command 5, 120

mul instruction 62, 466

 Index N

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 715

N
name.c file 10

name.h file 11

name.o file 10

naming conventions 10

nap instruction 75, 466

network interface
sample script 105
script instructions 102

newscript command 5, 19

not instruction 62, 469

nwitime instruction 75, 470

O
open command 336

or instruction 62, 471

ORACLE database
call data collection 24

P
phremove instruction 85, 472

phreserve instruction 82, 473

platform management
channel service states 338
interface 338
library states 339
sending messages 339
timer management 340

Primary Rate Interface (PRI)
script instructions 106

Q
Queue keys 142

quit instruction 76, 476

R
RAID 360

receive messages 161

recog_cntl instruction 91, 477

recog_init instruction 91, 478

 Index S

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 716

recog_start instruction 91, 479

recog_stop instruction 91, 481

reports
storage in database 24

resource management
assessing utilization 332
delayed allocation 322
dynamic resources 318
explicit allocation 326, 329
functions 331
implicit allocation 319
static resources 318
strategies 331
system tunable parameters

changing 367
Resource Manager (RM) 352

resource_alloc instruction 91, 482

RM, see resource management

rmdb command 205, 332, 352, 356, 358

rts instruction 76, 484

S
samples, see examples

sar command 359

say instruction 485

scrinst instruction 76, 488

script development
defining user memory 120
identification of events 120
source file 121
transaction control header files 119

script instructions
arguments 28
call data collection 24
data gathering 48
data manipulation 59
feature related 105
flow control 68
network interface 102
summary 409
syntax 26–33
voice coding 82
voice output 33
wait-causing 124
WholeWord speech recognition 92

 Index S

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 717

scripts
application example 387
call progression 19
control 20
inline comments 16
labels 15
naming conventions 10
script language 391
syntax 409
terminating 21
troubleshooting 130
updating 5
user memory 22

setalk instruction 47, 490

setattr instruction 491

setcca instruction 492

setIRAPIparam instruction 494

setparam instruction 113, 496

setstring instruction 113, 500

setttfl instruction 50, 501

sleep instruction 78, 502

slots, bulletin board 146

soft seizure 78

soft_szr command 206

source file, script development 121

sp_alloc instruction 94, 99, 503

speech files
algorithm conversion 300
algorithm detection 299
byte conversions 301
commands 302
headers 297
talkfile/phrase_id mapping 301
time conversions 301
voice file descriptors 295
voice file positioning 297

speech recognition
echo cancellation 311
IRAPI events 310
IRAPI functions 305
IRAPI grammar header files 308
IRAPI parameters 307

speech-flushing instructions 123

spres command 303

spsav command 303

sr_talkoff instruction 90, 95, 506

startup function 154, 586

strcmp instruction 65, 508

 Index T

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 718

strcpy instruction 66, 510

string instructions 65

strlen instruction 67, 510

sub-band coding (SBC)
SBC16 83
SBC24 83

subprog instruction 78, 511

subroutines
label 75

system messages
content 373
format 373
mnemonic definitions 375

systems
online help support xxxiv

T
T1

interface process (TWIP) 19
talk instruction 37, 39, 130, 515

talkresume instruction 43, 516

TAS, see transaction assembler script

tchars instruction 34, 518

TDM bus
timeslot management 291

Text-to-Speech (TTS)
IRAPI functions 335–337
script instructions 101

tfile instruction 519

tflush instruction 40, 520

threshold function 598

tic instruction 102, 106, 523

timeslot management, TDM bus 291

Tip/Ring
interface process (TRIP) 19

tnum instruction 36, 547

tools
application development 4, 22

trace command 352

trace instruction 117, 549

transaction assembler script (TAS)
instructions 408
program, defined 5

 Index U

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 719

transaction state machine (TSM) 18
interacting with DIPs 165
new call arrival 22
script control 21
talking to DIPs 164
user memory 22

TRIP, see Tip/Ring interface process

troubleshooting
scripts 130

check talk instructions 130
loss of touch tones 135

truss command 354

TSM, see transaction state machine

tstop instruction 44, 550

ttclear instruction 552

ttdelim instruction 553

ttintr instruction 557

ttmask instruction 558

tts_dip 182

tttime instruction 50, 559

TWIP, see T1 interface process

U
user memory 120

defining 120
TSM process 22

V
vc instruction 85, 560

vctime instruction 87, 565

vdf command 303

voice coding
instructions 82

voice filesystem 208

voice operations
speech control 277
speech play 277
speech queuing 276
voice recording 279

VSerror function 158, 589

VSstartup function 154, 590

 Index W

Intuity™ CONVERSANT® System Version 7.0 Application Development with
Advanced Methods 585-313-203

Issue 2 January 2000 720

VStoname function 157, 158, 593

VStoqkey function 157, 158, 594

vtlmgr command 354

W
wait causing instructions 124

wait conditions
speech flushing instructions 123
wait-causing instructions 124

WholeWord speech recognition
script instructions 92

	===============
	MAIN MENU
	MASTER INDEX
	GLOSSARY
	===============
	Intuity™ CONVERSANT® System Version 7.0 Application Development with Advanced Methods
	Copyright and Legal Notices
	Contents
	About This Book
	Overview
	Intended Audience
	How to Use This Book
	Conventions Used in This Book
	Terminology
	Safety and Security Alert Labels

	Getting Help
	Technical Assistance
	Related Resources
	Using the CD-ROM Documentation
	How To Comment on This Book

	1 Application Design Considerations
	Overview
	Designing a Successful Application
	Application Development Tools

	2 Application Structure
	Overview
	Application Components
	Directory Structure for Applications
	Conventions for Naming Files and Programs
	Coding Style

	3 TAS Script Instructions
	Overview
	Transaction State Machine
	The Script and Call Progression
	Call Progression Starting Conditions
	Script Control
	TSM Control
	Script Termination

	Data Storage
	Call Data Collection
	Script Conventions
	Destination and Source Arguments
	Arguments to Script Instructions
	Address Modes

	Script Instructions
	Voice Output Instructions
	Data Gathering Instructions
	Data Manipulation Instructions
	String Instructions
	Flow Control Instructions
	Voice Coding Instructions
	Dial Pulse and Speech Recognition Script Instructions
	Network Interface Instructions
	Miscellaneous Instructions

	Script Development
	Transaction Control Header Files
	Defining User Memory
	Identification of Events
	Source File

	Wait Conditions
	Speech�Flushing Instructions
	Wait�Causing Instructions
	Avoiding Common Pitfalls with Wait Conditions

	Troubleshooting Scripts
	Check the Status of talk Instructions
	Erase Arguments in the ttdelim Instruction
	Speech String Matching Failures
	Loss of Touch Tones

	4 Data Interface Processes
	Overview
	Introduction to the Data Interface Process
	Message Queues
	Types of DIPs
	Bulletin Board

	Writing the DIP
	Step 1: Define Data to be Passed Between the DIP and the TSM Script
	Step 2: Initialize the DIP to the System
	Step 3: Send and Receive Messages
	Step 4: Implement the Application-Specific Processing
	Step 5: Define and Add Logger Errors
	Step 6: Add Error Reporting
	Step 7: Add Trace Messages
	Step 8: Compile and Execute the DIP

	Troubleshooting
	Hardcoded DIPs
	TTS_DIP
	Message Interfaces with tts_dip

	5 IRAPI
	Overview
	Introduction to the IRAPI
	Library Overview
	Manual Pages for Commands and Parameters
	Library Parameters
	Application Structure and Control
	Resource Allocation
	Voice Input and Output
	IRAPI Organization
	IRAPI with Intuity CONVERSANT System Features
	Application Organization

	Application Control
	Application Dispatch Process
	Application Dispatch API

	IRAPI Run-Time Services
	Application Framework
	Run-Time Services

	Application Management
	Compiling and Installing Applications
	Debugging Applications

	Performance and System Tuning for IRAPI Applications
	Resource Management
	Disk Performance
	RM Tunable Parameters
	Global Parameters

	6 Message Logger
	Overview
	Overview of the Message Logger
	Message Logger Purpose
	Message Classes

	Message Logger Development
	Message Logger Structure
	Message Content and Format Specification
	Compiling the Messages in the DIP
	Testing a Single Error Message
	Testing Several Error Messages

	Adding and Changing Explain Message Text
	Using the Text Editor to Add Messages
	Using the Command Line To Add Messages

	Removing Error Messages

	A Application Example
	Overview
	Sample Script — Script Builder Action Steps
	Sample Script — TAS Script Language
	Sample External Function
	Sample DIP
	APPLmsg File
	logAPPL.h File

	B Summary of TAS Script Instructions
	Overview
	TAS Script Instruction Syntax
	and
	atoi
	background
	case
	chantype
	dbase
	decr
	dipname
	dipnum
	dipterm
	div
	dtitos
	dtstoi
	event
	exec
	execu
	extend
	getinput
	getIRAPIparam, getIRAPIparamstr
	goto
	hbridge
	hundsec
	ibrl
	incr
	itoa
	jmp
	label
	listenall
	load
	mul
	nap
	no_rts
	not
	nwitime
	or
	phremove
	phreserve
	quit
	recog_cntl
	recog_init
	recog_start
	recog_stop
	resource_alloc
	rts
	say
	scrinst
	setalk
	setattr
	setcca
	setIRAPIparam, setIRAPIparamstr
	setparam
	setstring
	setttfl
	sleep
	sp_alloc
	sr_talkoff
	strcmp
	strcpy
	strlen
	subprog
	talk
	talkresume
	tchars
	tfile
	tflush
	tic
	tnum
	trace
	tstop
	ttclear
	ttdelim
	ttintr
	ttmask
	tttime
	vc
	vctime

	C C�Library Functions
	Overview
	Purpose
	C-Library Function Locations
	libspp.so Functions
	db_init
	db_pr
	db_put
	et_send
	mesgrcv
	mesgsnd
	startup
	VSerror
	VSstartup
	VStoname
	VStoqkey

	libalerter.a Function
	threshold

	liblog.a Functions
	expandLog
	logDstPri
	logMsg

	Glossary
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Index
	�Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

